Math, asked by jatrupali4, 11 months ago

please solve this question​

Attachments:

Answers

Answered by Anonymous
5

Answer:

(1 + sin∅)/cos∅

Step-by-step explanation:

(tan∅ + sec∅ - 1)/(tan∅ - sec∅ + 1)

=> [(tan∅ + sec∅ - (sec²∅ - tan²∅)]/(tan∅ - sec∅ + 1)

=> [(tan∅ + sec∅ - (sec∅ + tan∅)(sec∅ - tan∅)]/(tan∅ - sec∅ + 1)

=> [tan∅ + sec∅(1 - sec∅ + tan∅)]/(tan∅ - sec∅ + 1)

=> tan∅ + sec∅

=> (sin∅/cos∅) + (1/cos∅)

=> (sin∅ + 1)/cos∅

#MarkAsBrainliest

Answered by Anonymous
6

Question :-

(tan θ + sec θ - 1)/(tan θ - sec θ + 1) = (1 + sin θ)/cos θ

Solution :-

 \sf \dfrac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1}  =  \dfrac{1 + sin \theta}{cos \theta}  \\

Consider LHS

 \sf \dfrac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1}  \\

Substituting 1 = sec² θ - tan² θ in the numerator

 \sf = \dfrac{tan \theta + sec \theta - (sec^{2} \theta - tan^{2}  \theta) }{tan \theta - sec \theta + 1} \\\\

Expanding (sec² θ - tan² θ)

 \sf = \dfrac{tan \theta + sec \theta - (sec \theta + tan\theta)(sec \theta - tan \theta) }{tan \theta - sec \theta + 1}   \\\\

[ Because, x² - y² = (x + y)(x - y) ]

 \sf = \dfrac{sec \theta + tan \theta - (sec \theta + tan\theta)(sec \theta - tan \theta) }{tan \theta - sec \theta + 1}\\\\

Taking (sec θ + tan θ) common in numerator

 \sf  = \dfrac{sec \theta + tan \theta \{1 -(sec \theta - tan \theta) \} }{tan \theta - sec \theta + 1}   \\\\\\

 \sf  = \dfrac{sec \theta + tan \theta(1 -sec \theta  +  tan \theta) }{tan \theta - sec \theta + 1}\\\\

Rearranging the terms in denominator

 \sf  = \dfrac{sec \theta + tan \theta( \cancel{1 -sec \theta  +  tan \theta}) }{ \cancel{1 - sec \theta  + tan \theta} } \\\\\\

 \sf  = sec \theta + tan \theta \\  \\  \\

 \sf=  \dfrac{1}{cos \theta}  +  \dfrac{sin \theta}{cos \theta}\\\\

[ Because, sec θ = 1/cos θ and tan θ = sin θ/cos θ ]

 \sf=  \dfrac{1 + sin \theta}{cos \theta} \\

= RHS

∴ LHS = RHS

Hence proved.

Similar questions