Math, asked by soumya235, 9 months ago

please solve this question..​

Attachments:

Answers

Answered by BrainlyPopularman
5

Question :

▪︎ Evaluate   \:  \:  \displaystyle \sum_{n=1}^{13} (i^n + i^{n+1}) \:  \:  , Where   {  \:  \: \bold{ n \in \: N}} \:  \:

ANSWER :

Let's put –

  \\   \implies{ \bold{ \:  \: p = }} \displaystyle \sum_{n=1}^{13} (i^n + i^{n+1}) \:  \:   \\

• We show write this as –

  \\   \implies{ \bold{ \:  \: p = }} \displaystyle \sum_{n=1}^{13} (i^n)  + \displaystyle \sum_{n=1}^{13} (i^{n+1}) \:  \:   \\

• Now put the values of 'n'

  \\   \implies{ \bold{ \:  \: p = \: }}  ( i + {i}^{2}  + ...... +  {i}^{13}) + ( {i}^{2}  +  {i}^{3}  + ...... +  {i}^{14} ) \:  \:   \\

Properties of iota :

  \\   \:  \:  \:  \:  \:  \:  \:  \:  { \huge{.}} \:  \: \:  \:  i  = \sqrt{ - 1}   \\

  \\   \:  \:  \:  \:  \:  \:  \:  \:  { \huge{.}} \:  \: \:  \:   {i}^{2}   =  - 1   \\

  \\   \:  \:  \:  \:  \:  \:  \:  \:  { \huge{.}} \:  \: \:  \:   {i}^{3}   =  - i   \\

  \\   \:  \:  \:  \:  \:  \:  \:  \:  { \huge{.}} \:  \: \:  \:   {i}^{4}   =  1  \\

  \\   \:  \:  \:  \:  \:  \:  \:  \:  { \huge{.}} \:  \: \:  \:   i +  {i}^{2}  +  {i}^{3} +  {i}^{4} = 0  \\

• So that –

  \\   \implies{ \bold{ \:  \: p = \: }} [  ( i + ...+  {i}^{4}  )+  ({i}^{5}  ... +  {i}^{8}) + ( {i}^{9} + ... +  {i}^{12} ) +  {i}^{13}  ] +[ ( {i}^{2}  + ... +  {i}^{5} ) + ( {i}^{6}  + ... +  {i}^{9} ) + ( {i}^{10} ... +  {i}^{13} ) +  {i}^{14} ] \:  \:   \\

  \\   \implies{ \bold{ \:  \: p = \: }} [  ( i + ...+  {i}^{4}  )+  {i}^{4}  ({i}   + ... +  {i}^{4}) +  {i}^{8} ( {i}^{} + ... +  {i}^{4} ) +  {i}^{12}  .i] +[ i( {i}^{}  + ... +  {i}^{4} ) + {i}^{5}  ( {i}^{}  + ... +  {i}^{4} ) + {i}^{9}  ( {i}^{} +  ... +  {i}^{4} ) +  {i}^{12} .i] \:  \:   \\

  \\   \implies{ \bold{ \:  \: p = \: }}   {i}^{12}  .i +   {i}^{12} . {i}^{2}  \:  \:  \:  \:  \:  [  \: \because \:  \: i +  {i}^{2}  +  {i}^{3} +  {i}^{4}  = 0 ] \\

  \\   \implies{ \bold{ \:  \: p = \: }}i +    {i}^{2}  \:  \:  \:  \:  \:  [  \: \because \:  \: {i}^{12}  =  {i}^{4} . {i}^{4} . {i}^{4} = 1  ]\\

  \\   \implies{ \bold{ \:  \: p = \: }} \: i  - 1  \:  \:  \:  \:  \:  [  \: \because \:  \:  {i}^{2} =  - 1   ]\\

Hence ,   \\ \:  \:  \displaystyle \sum_{n=1}^{13} (i^n + i^{n+1})  = i - 1 \\ \:  \:

Answered by Anonymous
4

Answer:

mujhe zoom meeting ke bare mein kuch nahi pata.... sorry

Similar questions