Math, asked by mardavjain2005, 10 months ago

please solve this question​

Attachments:

Answers

Answered by amitkumar44481
5

QuestioN :

If sinθ = a / b then prove that ( Secθ + tan θ ) = √b + a / √ b - a.

SolutioN :

We have,

  • Sin θ = a / b.

★ Let's Find Cos θ.

We know,

  • sin²θ + cos²θ = 1.

So,

→ ( a / b )² + cos²θ = 1.

→ cos²θ = 1 - ( a / b )².

→ cos²θ = b² - a² / b²

→ cos² θ = √b² - a² / b.

\rule{100}2

Tanθ = sin θ / cos θ.

→ Tanθ = a / √b² - a².

\rule{100}2

Secθ = 1 / cosθ.

Secθ = b / √b² - a²

Now,

A/ Q,

→ Sec θ + tan θ.

→ b / √ b² - a² + a / √b² - a².

Rationalize the denominator.

→ √b + a / √ b - a

Hence Proved.

Note : Full solution provide in attachment.

Attachments:
Answered by ItzArchimedes
61

DIAGRAM:

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\put(0,0){\line(1,0){60}}\put(60,0){\line(0,1){45}}\put(0,0){\line(4,3){60}}\put(-4,-4){C}\put(61,-4){B}\put(61,46){A}\put(57,0.1){\framebox(3,3){}}\qbezier(5,0)(5,1)(4,3)\put(6,1){$\theta$}\put(62,21){a}\put(29,25){b}\put(22,-6){$\mathrm{\sqrt{b^2-a^2}}$}\end{picture}

GIVEN:

  • sin\theta= \dfrac{a}{b}

TO PROVE:

  • secθ + tanθ  = \sqrt{\dfrac{b+a}{b-a}}

SOLUTION:

cosθ =  \sf\dfrac{Adjacent}{Hypotenuse}

cosθ =  \sf\dfrac{\sqrt{b^2 - a^2}}{b}

secθ =  \sf\dfrac{b}{\sqrt{b^2 - a^2}}

Assuming as equation 1

tanθ = \sf\dfrac{sin\theta}{cos\theta} = \sf\dfrac{\frac{a}{b}}{\frac{\sqrt{b^2 - a^2}}{b}}= \sf\dfrac{a}{\sqrt{b^2 - a^2}} Assuming as equation 2

Adding both equations

→ secθ + tanθ =  \bigg[ \sf\dfrac{a + b}{\sqrt{b^2 - a^2}}\bigg]

Rationalising the denominator

→ secθ + tanθ = \sf \sqrt{\dfrac{b+a}{b-a}}

Hence proved

Similar questions