Math, asked by TheSand, 9 months ago

please solve this question​

Attachments:

Answers

Answered by aayushmishrarewa
1

Answer:

x = 5  - 2 \sqrt{6} \\  \frac{1}{x}  =  \frac{1}{x}  =  \frac{1}{5 - 2  \sqrt{6}  \times  \frac{5 + 2 \sqrt{6} }{5 + 2 \sqrt{6} }  = 5 + 2 \sqrt{6}   \\  {x}^{2}  +  { \frac{1}{x} }^{2}  =  {5 - 2 \sqrt{6} }^{2}  +  {5 + 2 \sqrt{6} }^{2}  \\  = (25 +  {2 \sqrt{6} }^{2}  - 20 \sqrt{6} +  {2 \sqrt{6} }^{2}  ) + (25 + 20 \sqrt{6}   +  {2 \sqrt{6} }^{2}  \\  = 50 + 48 \\  = 98 \\ answer

Please mark it as brainliest

Answered by sujaan77
1

Answer:

98

Step-by-step explanation:

Given:

x = 5 - 2 \sqrt{2}

To find:

 {x}^{2}  +  \frac{1}{ {x}^{2} }

Putting the value of x

 {5 - 2 \sqrt{6} }^{2}  +  \frac{1}{? \\  {(5 - 2 \sqrt{6} }^{2} }

25 + 24 - 2(5 \times 2 \sqrt{6} ) +  \frac{1}{25 + 24 - 2(5 \times  \sqrt{6} }

25 + 24 - 2(5 \times 2 \sqrt{6}  +  \frac{1}{49 - 2(5 \times 2 \sqrt{6} }

Rationalising the second term

25 + 24 - 2(5 \times 2 \sqrt{6}  +  \frac{1}{49 - 20 \sqrt{6} }  \times  \frac{49 + 20 \sqrt{6} }{49 + 20  \sqrt{6}

25 + 24 - 20 \sqrt{6}  +  \frac{49 + 20 \sqrt{6} }{ {49}^{2} -  {20 \sqrt{6} }^{2} }

49 - 20 \sqrt{6}  +  \frac{49 + 20 \sqrt{6} }{1}  \\ elimimate \: the \: opposites \\ 49 + 49 = 98

Similar questions