please solve this question
.............
Answers
Answer:
To Prove ∑nr=03r×Crn=4n by binomial expansion
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=∑nr=0Crn×an−r×br
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=∑nr=0Crn×an−r×brif
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=∑nr=0Crn×an−r×brifwe compare the two terms
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=∑nr=0Crn×an−r×brifwe compare the two terms∑nr=03r×Crn=∑nr=0Crn×an−r×br
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=∑nr=0Crn×an−r×brifwe compare the two terms∑nr=03r×Crn=∑nr=0Crn×an−r×brhence if we make a=1 and b=3
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=∑nr=0Crn×an−r×brifwe compare the two terms∑nr=03r×Crn=∑nr=0Crn×an−r×brhence if we make a=1 and b=3we get ∑nr=0Crn×1n−r×3r
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=∑nr=0Crn×an−r×brifwe compare the two terms∑nr=03r×Crn=∑nr=0Crn×an−r×brhence if we make a=1 and b=3we get ∑nr=0Crn×1n−r×3rwhich is same as given term,
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=∑nr=0Crn×an−r×brifwe compare the two terms∑nr=03r×Crn=∑nr=0Crn×an−r×brhence if we make a=1 and b=3we get ∑nr=0Crn×1n−r×3rwhich is same as given term,∑nr=03r×Crn
To Prove ∑nr=03r×Crn=4n by binomial expansion(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=∑nr=0Crn×an−r×brifwe compare the two terms∑nr=03r×Crn=∑nr=0Crn×an−r×brhence if we make a=1 and b=3we get ∑nr=0Crn×1n−r×3rwhich is same as given term,∑nr=03r×Crnputting the same values in (a+b)n=(1+3)n=4n