Physics, asked by soni2003, 9 months ago

please solve this question​

Attachments:

Answers

Answered by BrainlyTornado
15

QUESTION:

\sf If \ y =\dfrac{2}{sin \ \theta+\sqrt{3}\ cos \ \theta}\ ,then\ the\ minimum

\sf value\ of \ y\ is

ANSWER:

  • The minimum value of y = 1

GIVEN:

 \sf y =\dfrac{2}{sin \ \theta+\sqrt{3}\ cos \ \theta}

TO FIND:

  • The minimum value of y.

EXPLANATION:

\sf  y({sin \ \theta+\sqrt{3}\ cos \ \theta})=2

Differentiate w.r.t x

 \boxed{\bold {\large{ \dfrac{d}{dx}uv = uv' + vu'}}}

 \boxed{\bold {\large{ \dfrac{d}{dx}k = 0}}}

\sf  y({cos \ \theta+\sqrt{3}\  (- sin \ \theta})) \\ \sf + \dfrac{dy}{dx}({sin \ \theta+\sqrt{3}\ cos \ \theta}) =0

\sf sin \ \theta+\sqrt{3}\ cos \ \theta=\dfrac{2}{y}

\sf  \dfrac{dy}{dx} \left( \dfrac{2}{y} \right ) = -  y({cos \ \theta - \sqrt{3}\ sin \ \theta})

\sf  \dfrac{dy}{dx} =  - \dfrac{  y ^{2} ({cos \ \theta - \sqrt{3}\ sin \ \theta})}{2}

Put dy/dx = 0

\sf  0 = -  \dfrac{  y ^{2} ({cos \ \theta - \sqrt{3}\ sin \ \theta})}{2}

\sf  0 = cos \ \theta - \sqrt{3}\ sin \ \theta

\sf   \sqrt{3}\ sin \ \theta =  cos \ \theta

 \sf \dfrac{sin   \ \theta}{ \cos \theta} =  \dfrac{1}{ \sqrt{3} }

 \sf Tan \  \theta = \dfrac{1}{ \sqrt{3} }

\sf \theta ={ 30}^{ \circ}

\sf  \dfrac{dy}{dx} =  - \dfrac{  y ^{2} ({cos \ \theta - \sqrt{3}\ sin \ \theta})}{2}

Differentiate w.r.t x

\sf  \dfrac{d ^{2} y}{dx^{2} } =  - \dfrac{ 1}{2}  \dfrac{d}{dx} \bigg(y ^{2} ({cos \ \theta - \sqrt{3}\ sin \ \theta} ) \bigg)

\sf Let \ \bigg(y ^{2} ({cos \ \theta - \sqrt{3}\ sin \ \theta} ) \bigg) \ \ be \ z

\sf    \dfrac{d}{dx} \bigg(y ^{2} ({cos \ \theta - \sqrt{3}\ sin \ \theta} ) \bigg) = \dfrac{dz}{dx}

\sf    \dfrac{dz}{dx} =2y({cos  \theta - \sqrt{3}\ sin \theta} ) \\ \sf +{y}^{2} ( - sin \theta -  \sqrt{3}  cos \theta)

\sf  \dfrac{d ^{2} y}{dx^{2} } =  - \dfrac{ 1}{2}(2y({cos  \theta - \sqrt{3}\ sin \theta} ) )\\ \sf +  {y}^{2} ( - sin \theta -  \sqrt{3}  cos \theta)

Take 2y(cos θ - √3 sin θ)

Substitute θ = 30°

cos 30° = √3 / 2

sin 30° = 1 / 2

2y(cos θ - √3 sin θ) = 2y(√3 / 2 - √3 / 2)

2y(cos θ - √3 sin θ) = 2y(0)

2y(cos θ - √3 sin θ) = 0

\sf  \dfrac{d ^{2} y}{dx^{2} } =  - \dfrac{ 1}{2}(  {y}^{2} ( - sin \theta -  \sqrt{3}  cos \theta))

\sf  \dfrac{d ^{2} y}{dx^{2} } =   \dfrac{ 1}{2}(  {y}^{2} \ sin \ \theta +   {y}^{2}   \ \sqrt{3}  \ cos \ \theta)

Sin θ and cos θ are positive when θ = 30°

\sf \therefore \ \dfrac{d ^{2} y}{dx^{2} }  >  0

Hence y is minimum at θ = 30°

 \sf y =\dfrac{2}{sin \ \theta+\sqrt{3}\ cos \ \theta}

Substitute θ = 30°

 \sf y =\dfrac{2}{sin \  {30}^{ \circ} +\sqrt{3}\ cos \ {30}^{ \circ}}

\sf y =\dfrac{2}{ \dfrac{1}{2}  +\sqrt{3}  \left(\dfrac{ \sqrt{3} }{2}\right)}

\sf y =\dfrac{2}{ \dfrac{1 + 3}{2}  }

\sf y =\dfrac{2}{ \dfrac{4}{2}  }

 \sf y =  \dfrac{2}{2}

\sf y = 1

Hence the minimum value of y = 1

Similar questions