Math, asked by syonbopanna, 9 months ago

please solve this question​

Attachments:

Answers

Answered by SupriyaReddy12345
2

Answer:

Here is the solution

Hope this helps u

Attachments:
Answered by spacelover123
4

Question

Solve ⇒ \sf \dfrac{36\times (-6)^{2}\times 3^{6} }{12^{3} \times 3^{5} }

\rule{300}{1}

Answer

In the given question we must make all the numbers in the prime form or simplest form. So let's do it.

\sf \dfrac{36\times (-6)^{2}\times 3^{6} }{12^{3} \times 3^{5} }

In this 36 can be written as 2×2×3×3. But we need to make it into exponential value so our number 36 would be written as ⇒ 2²×3². So we will write 36 as 2²×3² in the problem.

\sf \dfrac{36\times (-6)^{2}\times 3^{6} }{12^{3} \times 3^{5} }

\sf \dfrac{2^{2}\times 3^{2} \times (-6)^{2}\times 3^{6} }{12^{3} \times 3^{5} }

Now 12 can be written as 2×2×3. But we need to make it into exponential value so our number 13 would be written as ⇒ 2²×3. So we will convert 12 to 2²×3.

\sf \dfrac{2^{2}\times 3^{2} \times (-6)^{2}\times 3^{6} }{12^{3} \times 3^{5} }

\sf \dfrac{2^{2}\times 3^{2} \times (-6)^{2}\times 3^{6} }{(2^{2}\times 3) ^{3} \times 3^{5} }

Now we will make (-6)² as it's original value and then simplify it. (-6)² = (-6)×(-6) = 36. In this 36 can be written as 2×2×3×3. But we need to make it into exponential value so our number 36 would be written as ⇒ 2²×3². So we will write (-6)² as 2²×3² in the problem.

\sf \dfrac{2^{2}\times 3^{2} \times (-6)^{2}\times 3^{6} }{(2^{2}\times 3) ^{3} \times 3^{5} }

\sf \dfrac{2^{2}\times 3^{2} \times 2^{2}\times 3^{2} \times 3^{6} }{(2^{2}\times 3) ^{3} \times 3^{5} }

Now we will apply this law of exponent to remove brackets ⇒ (a^{m})^{n}=a^{m\times n}

\sf \dfrac{2^{2}\times 3^{2} \times 2^{2}\times 3^{2} \times 3^{6} }{(2^{2}\times 3) ^{3} \times 3^{5} }

\sf \dfrac{2^{2}\times 3^{2} \times 2^{2}\times 3^{2} \times 3^{6} }{2^{2\times 3 }\times 3^{1\times 3}  \times 3^{5} }

\sf \dfrac{2^{2}\times 3^{2} \times 2^{2}\times 3^{2} \times 3^{6} }{2^{6}\times 3^{3}  \times 3^{5} }

Now we will combine like bases together and rearrange the numbers.

\sf \dfrac{2^{2}\times 3^{2} \times 2^{2}\times 3^{2} \times 3^{6} }{2^{6}\times 3^{3}  \times 3^{5} }

\sf \dfrac{2^{2}\times  2^{2}\times 3^{2} \times3^{2} \times 3^{6} }{2^{6}\times 3^{3}  \times 3^{5} }

Next, we will apply this law of exponent ⇒ a^{m}\times a^{n} = a^{m+n}

\sf \dfrac{2^{2}\times  2^{2}\times 3^{2} \times3^{2} \times 3^{6} }{2^{6}\times 3^{3}  \times 3^{5} }

\sf \dfrac{2^{2+2}\times  3^{2+2} \times 3^{6}}{2^{6}\times 3^{3+5}}

\sf \dfrac{2^{4}\times  3^{4+6}}{2^{6}\times 3^{8}}

\sf \dfrac{2^{4}\times  3^{10}}{2^{6}\times 3^{8}}

Now we must apply this law of exponent ⇒ a^{m}\div a^{n} = a^{m-n}

\sf \dfrac{2^{4}\times  3^{10}}{2^{6}\times 3^{8}}

\sf 2^{4-6}\times  3^{10-8}

\sf 2^{-2}\times  3^{2}

Now we will apply negative power law ⇒ a^{-m}=\frac{1}{a^{m}}

\sf 2^{-2}\times  3^{2}

\sf \dfrac{1}{2^{2}} \times  3^{2}

At last, we will give the exponents their actual value and multiply.

\sf \dfrac{1}{2^{2}} \times  3^{2}

\sf \dfrac{1}{(2\times 2) } \times  (3\times 3)

\sf \dfrac{1}{4 } \times  9

\sf \dfrac{9}{4}

\bf \therefore \dfrac{36\times (-6)^{2}\times 3^{6} }{12^{3} \times 3^{5} } =\dfrac{9}{4}

\rule{300}{1}

Similar questions