Math, asked by GangsterTeddy, 7 months ago

please solve this question ☺️☺️☺️

Attachments:

Answers

Answered by anindyaadhikari13
3

\star\:\:\:\sf\large\underline\blue{Question:-}

  • Prove that  \sf {2}^{ \frac{1}{4} }  \times  {4}^{ \frac{1}{8}} \times  {8}^{ \frac{1}{16} }  \times ..... \infty  = 2

\star\:\:\:\sf\large\underline\blue{Proof:-}

 \sf {2}^{ \frac{1}{4} }  \times  {4}^{ \frac{1}{8}} \times  {8}^{ \frac{1}{16} }  \times ..... \infty

 \sf= {2}^{ \frac{1}{4} }  \times  { ({2}^{2} )}^{ \frac{1}{8} }  \times  { ({2}^{3} )}^{ \frac{1}{16} }  \times .... \infty

 \sf =  {2}^{ \frac{1}{4} }  \times   {2}^{ \frac{2}{8} }  \times  {2}^{ \frac{3}{16} }  \times ... \infty

 \sf   =  {2}^{ \frac{1}{4} +  \frac{2}{8}  +  \frac{3}{16}  + ... \infty  }

 \sf  Let \: S =   \frac{1}{4} +  \frac{2}{8}  +  \frac{3}{16}  + ... \infty

Therefore,

 \sf \frac{1}{2} S =  \frac{1}{8}  +  \frac{2}{16}  + ... \infty

 \sf \implies S -  \frac{1}{2} S =  \frac{1}{4}  +  \frac{1}{8}  +  \frac{1}{16}  + .... \infty

 \sf \implies \frac{1}{2} S =  \frac{1}{4}  +  \frac{1}{8}  +  \frac{1}{16}  + .... \infty

 \sf \implies  S =  \frac{1}{2}  +  \frac{1}{4}  +  \frac{1}{8}  + .... \infty

 \sf \implies  2S = 1 +  \frac{1}{2}  +  \frac{1}{4}  +  \frac{1}{8}  + .... \infty

 \sf \implies2S -  S = 1

 \sf \implies S = 1

Therefore,

 \sf {2}^{S}  =  {2}^{1}  = 2

So,

 \boxed{ \sf {2}^{ \frac{1}{4} }  \times  {4}^{ \frac{1}{8}} \times  {8}^{ \frac{1}{16} }  \times ..... \infty  = 2}

Hence Proved.

Have a great day ahead.

Answered by itzkanika85
0

Answer:

Reffered to the attachment

Step-by-step explanation:

#KeepLearning...

.

.

.

Warm regards:Miss Chikchiki

Attachments:
Similar questions