Math, asked by sunita16582, 7 months ago

please solve this question​

Attachments:

Answers

Answered by sethrollins13
54

Given :

  • ∠ROQ = 90°

To Prove :

  • ∠ROS = \dfrac{1}{2}(∠QOS-∠POS)

Solution :

As POQ is a line . So ,

\longmapsto\tt{\angle{POS}+\angle{ROS}+\angle{ROQ}=180\degree}

\longmapsto\tt{\angle{POS}+\angle{ROS}+90\degree=180\degree}

\longmapsto\tt{\angle{POS}+\angle{ROS}=180\degree-90\degree}

\longmapsto\tt\bf{\angle{POS}+\angle{ROS}=90\degree\:---(1)}

Also ,

\longmapsto\tt{\angle{QOS}=\angle{ROS}+\angle{ROQ}}

\longmapsto\tt{\angle{QOS}=\angle{ROS}+90\degree}

\longmapsto\tt\bf{\angle{QOS}-\angle{ROS}=90\degree\:---(2)}

By Equation 1 nd 2 :

\longmapsto\tt{\angle{POS}+\angle{ROS}=\angle{QOS}-\angle{ROS}}

\longmapsto\tt{\angle{ROS}+\angle{ROS}=\angle{QOS}-\angle{POS}}

\longmapsto\tt\bf{\angle{ROS}=\dfrac{1}{2}(\angle{QOS}-\angle{POS})}

HENCE PROVED

Attachments:
Answered by Anonymous
62

Given:-

•OR is perpendicular to PQ

•So that ∠POR = 90°

Sum of angle in linear pair always equal to 180°.

→∠POS + ∠SOR + ∠POR = 180°

Plug ∠POR = 90°

→90°+∠SOR + ∠POR = 180°

→∠SOR + ∠POR = 90°

→∠ROS = 90° − ∠POS … (1)

→∠QOR = 90°

Given that OS is another ray lying between rays.

OP and OR so that

→∠QOS − ∠ROS = 90°

→∠ROS = ∠QOS − 90° ...(2)

On adding equations (1) and (2), we obtain.

→2 ∠ROS = ∠QOS − ∠POS

→∠ROS = 1/2(∠QOS − ∠POS)

Hence verified!

Similar questions