Math, asked by gangurdesnehal96, 7 months ago

PLEASE SOLVE THIS QUESTION ​

Attachments:

Answers

Answered by Anonymous
78

\large\mathrm{Given:}

\mathtt{ seg. AB\:||\: seg.DC}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

\large\mathrm{To \:Find:}

\mathtt{  x = ?}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

\large\mathrm{Solution}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

\mathtt{  In \: \triangle{AOB} \:and\:\triangle{DOC}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

\mathtt{\angle{AOB}\: = \:\angle{BOC}\:\:(Vertically\: Opposite\:Angles)}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

\mathtt{\angle{OAB}\: = \:\angle{OCD}\:\:(Alternate \:angels\:of\:||\:lines)}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

\mathtt{\angle{ABO}\: = \:\angle{CDO}\:\:(Alternate \:angels\:of\:||\:lines)}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\therefore{\mathtt{\triangle{AOB}\:\sim\:\triangle{DOC}\:\:\:(AAA\:similarity\: criteria}}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

\mathtt{hence ,\dfrac{OD}{OB} = \dfrac{OC}{OA}\:\:(Ratio\: of \:corres. \:sides \:of \:similar \triangle\: is \:equal)}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{\dfrac{3}{x-3} = \dfrac{x-5}{3x-15}}}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{3(3x - 19) = (x - 5)(x - 3)}}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{9x - 57 = {x}^{2} - 3x -5x + 15 }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{ {x}^{2} - 3x - 5x + 15 - 9x + 57 = 0 }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{{x}^{2} - 17x + 72 = 0 }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{ {x}^{2} - ( 8 + 9 )x + 72 = 0 }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{ {x}^{2} - 8x - 9x + 72}}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{ x( x - 8 ) - 9( x - 8 ) }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{ (x - 8 )( x - 9 ) }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

{\star{\mathrm{ For ( x - 8 ) = 0 }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{ ( x - 8 ) = 0  }}}

{\longmapsto{\mathtt{ x = 8  }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

{\star{\mathrm{ For ( x - 9 ) = 0 }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀

{\longmapsto{\mathtt{ ( x - 9 ) = 0  }}}

{\longmapsto{\mathtt{ x = 9  }}}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

{\blue{\underline{\green{\boxed{\mathrm{ Value\:of\:x\:is\:8 \:and\:9}}}}}}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀{\blue{\boxed{\mathbb{\green{Brainly\:\:Booster}}}}}

\mathrm{Some\: similarity\: Criteria}

\starAAA similarity Criterion. If two triangles are equiangular, then they are similar.

\starCorollary(AA similarity). If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.

\starSSS Similarity Criterion. If the corresponding sides of two triangles are proportional, then they are similar.

\starSAS Similarity Criterion. If in two triangles, one pair of corresponding sides are proportional and the included angles are equal, then the two triangles are similar.

Attachments:

mddilshad11ab: Perfect explaination ✔️
Answered by Clvudii17
209

ANSWER:-

Given:-

Seg.AB|| Seg.DC

TO FIND:-

X=?

SOLUTION:-

In △AOB and △DOC

∠AOB =∠BOC (VERTICALLY OPPSITE ANGLE)

∠OAB = ∠OCD (ALTERNATE ANGLE OF||LINES)

∠ABO =∠CDO (ALTERNATE ANGLE OF LINES)

∴△AOB ~ △DOC (AAA SIMILARITY CRITERIA)

Hence,OD/OB = OC/OA (RATIO OF CORRES.SIDES OF SIMILAR△ IS EQUAL)

➠ 3/X-3 = X-5/3x-15

➠3(3x-19)=(x-5)(x-3)

➠9x -57 =x^2 -3x -5x+15

➠x^2-3x-5x+15-9x+57 =0

➠x^2 -(8+9)x+72=0

➠x^2 -8x -9x +72

➠x(x-8)-9(x-8)

➠(x-8) (x-9)

For (x-8)=0

➠(x-8)=0

➠x=8

For (x-9)=0

➠(x-9)=0

➠x=9

Similar questions