Math, asked by GangsterTeddy, 5 months ago

please solve this question​

Attachments:

Answers

Answered by anindyaadhikari13
4

Answer:-

Given ellipse,

 \sf \frac{ {x}^{2} }{25}  +  \frac{{y}^{2}}{9} = 1

Comparing with \sf \frac{x^{2}}{a^{2}}+ \frac{y^{2}}{b^{2}}=1, we get, </p><p>[tex] \sf {a}^{2}  = 25 \: and \:  {b}^{2}  = 9

Then,

Eccentricity e \sf =  \sqrt{1 -  \frac{ {b}^{2} }{ {a}^{2} } }

 \sf =  \sqrt{1 -  \frac{9}{25} }

 \sf =  \sqrt{ \frac{16}{25} }

 \sf =  \frac{4}{5}

Foci of the ellipse are (±4, 0).

So, the coordinates of the foci of the hyperbola are (±4, 0)

Let e' be the eccentricity of the required hyperbola and it's equation be

 \sf \frac{ {x}^{2} }{{A}^{2} }  -  \frac{ {y}^{2} }{B^{2} }  = 1 \: ....(i)

Therefore, the coordinates of the foci are (±Ae', 0)

 \sf \implies Ae' = 4

 \sf \implies A \times 2 = 4

 \sf \implies A = 2

Also,

 \sf {B}^{2}  = A^{2}( {(e')}^{2}  - 1)

 \sf = 12

Substituting the values of A and B in (i), we get,

 \sf \frac{ {x}^{2} }{4}  -  \frac{ {y}^{2} }{12}  = 1

 \sf \implies 3 {x}^{2}  -  {y}^{2}  - 12 = 0

Which is the required hyperbola.

Similar questions