Math, asked by leora, 6 months ago

please solve this question ​

Attachments:

Answers

Answered by Flaunt
30

\huge\bold{\gray{\sf{Answer:}}}

Explanation:

Given :

a = sin \alpha cos \beta

b = sin \alpha sin \beta

To Find :

 {a}^{2}  +  {b}^{2}  +  {c}^{2}

 =  >  {(sin \alpha cos \beta )}^{2}  +  {(sin \alpha sin \beta )}^{2}  +  {(co s\alpha )}^{2}

 =  >  {sin}^{2}  \alpha  {cos}^{2}  \beta  +  {sin}^{2}  \alpha  {sin}^{2}  \beta  +  {cos}^{2}  \alpha

Taking sin alpha common :

 {sin \alpha }^{2} ( {cos}^{2}  \beta  +  {sin}^{2}  \beta ) +  {cos}^{2}  \alpha

 \bold{\boxed{\red{{sin \beta }^{2}  +  {cos}^{2}  \beta  = 1}}}

 =  >  {sin}^{2}  \alpha  +  {cos}^{2}  \alpha   = 1

\bold{1\: is\: your \:answer}

Other Formulas:

  • sin (90-theta)=cos theta
  • Cos(90-theta)=sin theta
Similar questions