Math, asked by rajeshkumarsrivastav, 5 months ago

Please solve this question ??​

Attachments:

Answers

Answered by XxxRAJxxX
6

Given:

Proof:

 \rm \huge \frac{1 + \tan^2 A}{1 + \cot^2 A} = (\frac{1 - \tan A}{1 - \cot A})^2

Solution:

 \therefore \rm \frac{1 + \tan^2 A}{1 + \cot^2 A} = (\frac{1 - \tan A}{1 - \cot A})^2

\implies \rm \frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{(1 - \tan A)^2}{(1 - \cot A)^2}

On R.H.S :

Using ID:  \rm (a - b)^2 = a^2 - 2ab + b^2

 \therefore \rm \frac{[(1)^2 - 2\times 1 \times \tan A + (\tan A)^2]}{[(1)^2 - 2\times 1 \times \cot A + (\cot A)^2]}

 \implies \rm \bf \frac{[1 - 2\tan A + \tan^2 A]}{[1 - 2\cot A + \cot^2 A]}

On L.H.S :

 \therefore \rm \frac{1 + \tan^2 A}{1 + \cot^2 A}

 \implies \rm \frac{(1 + \tan A)^2}{(1 + \cot A)^2}

 \implies \bf \rm \frac{[1 + 2 \tan A + \tan^2 A]}{[1 + 2 \cot A + \cot^2 A]}

Therefore,

 \therefore \rm \frac{[1 + 2 \tan A + \tan^2 A]}{[1 + 2 \cot A + \cot^2 A]} = \frac{[1 - 2\tan A + \tan^2 A]}{[1 - 2\cot A + \cot^2 A]}

Cancelling from both sides,

 \implies\bf \rm \frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{1 + \tan^2 A}{1 + \cot^2 A}

L.H.S = R.H.S

HENCE, PROVED.

Similar questions