Math, asked by Jiyaa021, 5 months ago

please solve this question

Attachments:

Answers

Answered by krushika1104
7

Step-by-step explanation:

Just use the simple method of expansion of a determinant.

hope this answer helps.

Attachments:

amansharma264: Great
Answered by Asterinn
11

Given :

\left|\begin{array}{ccc}\sf1&\sf ab&\sf (a+b)c\\\sf1&\sf ca&\sf(c+a)b\\ \sf1 & \sf bc&\sf(b+c)a\end{array}\right|  = \sf 0

To prove :

LHS = RHS

Proof :

RHS = 0

 \implies  \rm LHS =\left|\begin{array}{ccc}\sf1&\sf ab&\sf (a+b)c\\\sf1&\sf ca&\sf(c+a)b\\ \sf1 & \sf bc&\sf(b+c)a\end{array}\right|  \\  \\  \implies  \left|\begin{array}{ccc}\sf1&\sf ab&\sf ac+bc\\\sf1&\sf ca&\sf cb+ab\\ \sf1 & \sf bc&\sf ba+ca\end{array}\right|  \\  \\

  \tt \: C_3  \rightarrow C_3+C_2 \\  \\ \implies  \left|\begin{array}{ccc}\sf1&\sf ab&\sf ab + ac+bc\\\sf1&\sf ca&\sf ca + cb+ab\\ \sf1 & \sf bc&\sf bc + ba+ca\end{array}\right|  \\ \\  \\ \implies  \left|\begin{array}{ccc}\sf1&\sf ab&\sf ab + ac+bc\\\sf1&\sf ca&\sf ab + ac+bc\\ \sf1 & \sf bc&\sf ab + ac+bc\end{array}\right|  \\  \\  \sf  \: taking \: out \: (ab + ac+bc) \: from \: C_3 \: as \: common \:  :  \\  \\ \implies \sf (ab + ac+bc)  \left|\begin{array}{ccc}\sf1&\sf ab&\sf 1\\\sf1&\sf ca&\sf 1\\ \sf1 & \sf bc&\sf 1\end{array}\right|

We know that , if all the elements of rows or column of determinant are identical to the elements of some other row or column, then determinant is zero.

  \implies \sf (ab + ac+bc)  \left|\begin{array}{ccc}\sf1&\sf ab&\sf 1\\\sf1&\sf ca&\sf 1\\ \sf1 & \sf bc&\sf 1\end{array}\right| = (ab + ac+bc) \times 0 \\  \\ \implies0

Therefore, LHS = RHS

hence proved

Similar questions