Math, asked by sachinyadav52323, 5 months ago

please solve this question ​

Attachments:

Answers

Answered by aryan073
2

Given:

\\ \pink\bigstar\rm{Differentiate \:  e^{\sqrt{3x}} \: with \: respect \: to \: x}

To Find :

\\ \pink\bigstar\rm{Differentiation \: of \: given \: expression=?}

Solution:

• Consider a function y=f(x) , where f(x) is a given expression in the question

According to the given conditions :

By using Chain's Rule:

  \\ \implies \sf \: y =   {e}^{ \sqrt{3x} }

  \\  \\ \implies \underline{ \red{ \bf{differentiating \:  \: both \:  \: side \:  \: with \: respect \: to \: x}}}

 \\  \implies \sf \:  \frac{dy}{dx}  =  {e}^{ \sqrt{3x} }  \times  \frac{1}{2 \sqrt{3} x}  \times 3 \\  \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{3y}{2 \sqrt{3} x }  \\  \\  \implies  \boxed{\boxed{ \sf{ \frac{dy}{dx}  =  \frac{3y}{2 \sqrt{3} x} }}}

\pink\bigstar\rm{Differentiation \: of \: e^{\sqrt{3x}} \: is \: \dfrac{3y}{2\sqrt{3}x}}

Similar questions