please solve this question
Attachments:
Answers
Answered by
1
Answer:
⇒a∈[0,1]
Step-by-step explanation:
Let
x
2
+4x+3a
x
2
+2x+a
=k
⇒x
2
+2x+a=k(x
2
+4x+3a)
⇒x
2
+2x+a−k(x
2
+4x+3a)=0
⇒(1−k)x
2
+(2−4k)x+(a−3ka)=0
Since x∈R,D≥0
⇒(2−4k)
2
−4×(1−k)(a−3ka)≥0
⇒4+16k
2
−16k−4(a−3ka−ak+3k
2
a)≥0
⇒4+16k
2
−16k−4a+12ka+4ak−12k
2
a≥0
⇒1+4k
2
−4k−a+3ka+ak−3k
2
a≥0
⇒k
2
(4−3a)+k(4a−4)+1−a≥0
⇒4−3a>0
⇒3a<4
∴a<
3
4
D<0
⇒(4a−4)
2
−4(4−3a)(1−a)≤0
⇒16(a−1)
2
−4(4−3a)(1−a)≤0
⇒(1−a)(4(1−a)−4+3a)≤0
⇒(1−a)(−a)≤0
⇒(a−1)a≤0
⇒a∈[0,1]
Similar questions