please solve this question
Answers
Step-by-step explanation:
Solution:
Yes, ‘ab’ is necessarily an irrational.
For example, let a = 2 (a rational number) and b = √2 (an irrational number)
If possible let ab = 2√2 is a rational number.
Now, aba = 22√2 = √2 is a rational number.
[∵ The quotient of two non-zero rational number is a rational]
But this contradicts the fact that √2 is an irrational number.
Thus, our supposition is wrong.
Hence, ab is an irrational number.
Solution:
Yes, x + y is necessarily an irrational number.
For example, let x = 3 (a rational number) and y = √5 (an irrational number)
If possible let x + y = 3 + √5 be a rational number.
Consider pq = 3 + √5, where p, q ∈ Z and q ≠ 0.
Squaring both sides, we have
Number Systems Class 9 Extra Questions Maths Chapter 1 with Solutions Answers 6
∵ pq is a rational
⇒ √5 is a rational
But this contradicts the fact that √5 is an irrational number.
Thus, our supposition is wrong.
Hence, x + y is an irrational number.