Math, asked by divya783, 2 months ago

please solve this question​

Attachments:

Answers

Answered by VishnuPriya2801
9

Answer:-

We have to prove:-

 \sf \:   \dfrac{ \tan A }{ \sec A - 1}  +  \dfrac{ \tan A}{ \sec A + 1}  = 2 \csc A

Taking LCM in LHS we get,

  \sf\implies  \:  \dfrac{ \tan A( \sec A - 1) +  \tan A( \sec A + 1) }{( \sec A - 1)( \sec A + 1)  }  = 2 \csc A

Taking tan A common in numerator and using (a + b)(a - b) = - in LHS we get,

 \sf \implies \:  \dfrac{ \tan A( \sec A  -  \cancel{ 1 }+  \sec A+     \cancel{ 1}) }{ { \sec }^{2} A -  {1}^{2}  }  = 2 \csc A  \\  \\  \\ \sf \implies \: \frac{ \tan A \times 2 \sec A}{{ \sec }^{2} A -  {1}}  = 2 \csc A

using tan² A = sec² A - 1 we get,

 \implies \sf \:  \dfrac{ \tan A  \times 2 \sec A }{ \tan ^{2} A }  = 2 \csc A \\  \\  \\ \implies \sf \: \frac{2 \sec A }{ \tan A }  = 2 \csc A

Using tan A = sin A/cos A and sec A = 1/cos A we get,

 \: \implies \sf \: \dfrac{2 \times  \frac{1}{ \cancel{ \cos A }} }{ \frac{ \sin A }{  \cancel{\cos A }} }  = 2 \csc A \\  \\  \\ \implies \sf \:2 \times  \frac{1}{ \sin A }  = 2 \csc A

Using cosec A = 1/sin A in LHS we get,

  \: \implies \sf \:2 \csc A = 2 \csc A

Hence, Proved.

Answered by SavageBlast
155

To Prove:-

{\boxed{{\dfrac{tan\:A}{sec\:A-1}+\dfrac{tan\:A}{sec\:A+1} = 2 \:cosec\: A}}}

Identities used:-

  • a² - b² = (a + b) (a - b)

  • tan² A = sec² A - 1

  • sec A = \dfrac{1}{cos\:A}

  • tan A =  \dfrac{sin\:A}{cos\:A}

  • cosec A = \dfrac{1}{sin\:A}

Proof:-

L.H.S = \dfrac{tan\:A}{sec\:A-1}+\dfrac{tan\:A}{sec\:A+1}

⠀⠀⠀

= \dfrac{tan\:A(sec\:A+1)+tan\:A(sec\:A-1)}{(sec\:A-1)(sec\:A+1)}

⠀⠀⠀

= \dfrac{tan\:A(sec\:A+1)(sec\:A-1)}{(sec\:A-1)(sec\:A+1)}

⠀⠀⠀

{\underline{Now, \:using \:identity \: a² - b² = (a + b) (a - b)}}

⠀⠀⠀

= \dfrac{tan\:A(sec\:A-1+sec\:A+1)}{(sec²\:A-1²)}

⠀⠀⠀

= \dfrac{tan\:A × 2 \: sec\: A}{(sec²\:A-1)}

⠀⠀⠀

{\underline{Using\: identity, \:tan² \:A = sec² \:A - 1}}

⠀⠀⠀

= \dfrac{tan\:A × 2 \: sec\: A}{tan² \:A}

⠀⠀⠀

= \dfrac{2\:sec\: A}{tan \:A}

⠀⠀⠀

 {\underline{Now, \:using \:identity \:sec\: A=\dfrac{1}{cos\:A}}}

{\underline{and\: also \:tan \:A\: =\dfrac{sin\:A}{cos\:A}}}

⠀⠀⠀

= 2×\dfrac{1}{sin\:A}

⠀⠀⠀

{\underline{Using \:identity\:cosec\:A\:= \:\dfrac{1}{sin\:A}}}

⠀⠀⠀

= {\bold{2\:cosec\:A\:=\:R.H.S}}

⠀⠀⠀

\text{\boxed{\orange{L.H.S = R.H.S}}}

HENCE Proved.

━━━━━━━━━━━━━━━━━━

Similar questions