Math, asked by srijansrivastav, 1 year ago

Please solve this question.

Attachments:

sivaprasath: Is the Question , ax + by = 1 , bx + ay = a^2 + b^2 ?

Answers

Answered by hukam0685
1
multiply first eq by b and second by a
abx +  {b}^{2} y = b \\ abx +  {a}^{2} y =  \frac{a(a + b)}{ {a}^{2}  +  {b}^{2} }
subtract both equation
 {b}^{2} y -  {a}^{2} y =  \frac{a( a + b)}{ {a}^{2}  +  {b}^{2} }  \\ y( {b}^{2}  -  {a}^{2} ) =  \frac{a(a  + b)}{ {b}^{2}  +  {a}^{2} }  \\ y =  \frac{a(a + b)}{( {b}^{2} +  {a}^{2}  )( {b}^{2} -  {a}^{2})  }  \\ y =  \frac{a(a + b)}{ {b}^{4}  -  {a}^{4} }  \\ or \\ y =  \: \frac{ - a(a + b)}{ {a}^{4}  -  {b}^{4} } \\ place \: the \: value \: of \: y \: in \: eq \: 1 \\ ax + by = 1 \\ ax +  \frac{ab(a + b)}{ {b}^{4} -  {a}^{4}  }  = 1 \\ ax = 1 -  \frac{ab(a + b)}{ {b}^{4} -  {a}^{4}  } \\ x =  \frac{ {b}^{4}  -  {a}^{4} - ab(a + b) }{ a({b}^{4} -  {a}^{4} ) }
Similar questions