Math, asked by gauravbigbrain, 2 months ago

Please solve this question​

Attachments:

Answers

Answered by ItzAshi
109

Step-by-step explanation:

{\large{\mathbf{\underline{\red{Given :→}}}}} \\

{\bold{\sf{➮ \:  \:  \:  \:  \:  \:  Volume  \: of  \: gas \:  (V_1) \:  = \:  30 \:  liters \:  =  \: 30×{10}^{ - 3}  m³}}} \\

{\bold{\sf{➮  \:  \:  \:  \:  \: Pressure (P_1)  \: =  \: 15 atm  \: =  \:15 × 1.013 × 10⁵  \: Pa}}} \\

{\bold{\sf{➮ \:  \:  \:  \:  \:  Temperature (T_1) \:  = \:  27°C  \: =  \: 300 K}}} \\

{\bold{\sf{➮  \:  \:  \:  \:  \: Universal \:  Gas \:  Constant (R)  \: =  \: 8.314 J \:  {mol}^{-1} {K}^{-1}}}} \\

\\  {\large{\mathbf{\underline{\red{To  \: find :→}}}}} \\

Mass of oxygen taken out of cylinder

\\ {\large{\mathbf{\underline{\red{Solution :→}}}}} \\

Let the initial number of moles of oxygen gas in the cylinder be n,

The gas equation is given as follows :

{\bold{\sf{P_1V_1  \: = \:  n_1RT_1}}} \\

Hence,

{\bold{\sf{n_1 \:  =  \: \frac{P_1V_1}{RT_1}}}} \\

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: \frac{15.195 \:  × \:  10⁵  \: ×  \: 30  \: × \:  {10}^{-3}}{8.314  \: × \:  300}}}} \\

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: 18.276}}} \\

{\bold{\sf{ \:  \:  \:  \:  \:  \: But  \: n_1  \: =  \: \frac{m_1}{M}}}} \\

Where,

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \:  m_1  \: =  \: initial  \: mass  \: of  \: oxygen}}} \\

{\bold{\sf{: \: ⟹ \:  \:  \:  \:  \:  M \:  =  \: molecular  \: mass  \: of  \: oxygen  \: = \:  32g}}} \\

Thus,

{\bold{\sf{: \: ⟹ \:  \:  \:  \:  \:  m_1  \: = \:  N_1M}}} \\

{\bold{\sf{: \: ⟹ \:  \:  \:  \:  \:  18.276 \:  × \:  32}}} \\

{\bold{\sf{: \: ⟹ \:  \:  \:  \:  \:  584.84 \: g}}} \\

After sometime oxygen is withdrawn from the cylinder, the pressure and temperature reduced

{\bold{\sf{➮ \:  \:  \:  \:  \:  Volume (V_2)  \: =  \: 30 \:  liters  \: =  \: 30  \: × \:  {10}^{-3}{m}^{3}}}} \\

{\bold{\sf{➮  \:  \:  \:  \:  \: Pressure (P_2) \:  =  \: 11 atm \:  =  \: 11 \:  ×  \: 1.013  \: ×  \: 10⁵ Pa }}} \\

{\bold{\sf{➮  \:  \:  \:  \:  \: Temperature (T_2) \:  = \:  17°C  \: = \:  290 K}}} \\

 \\ {\bold{\sf{Let  \: n_2  \: be  \: the  \: number  \: of  \: moles  \: left  \: in  \: the \:  cylinder}}} \\

The gas equation is given as :

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: P_2V_2  \: = \:  n_2RT_2}}} \\

Hence,

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: n_2  \: =  \: \frac{P_2V_2}{RT_2}}}} \\

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: \frac{11.143  \: ×  \: 10⁵  \: × \:  30  \: ×  \: {10}^{-30}}{8.314 \:  × \:  290}}}} \\

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: 13.86}}} \\

But,

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: n_2 =  \: \frac{m_2}{M}}}} \\

Where,

{\bold{\sf{m_2 \:  is  \: the \:  mass \:  of  \: oxygen \:  remain  \: in \:  the  \: cylinder}}} \\

Therefore,

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \:  m_2  \: = \:  n_2 × M  \: =  \: 13.86 × 32}}} \\

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: 453.1 \: g}}} \\

Mass of oxygen taken out of the solution is given by the relation :

Initial mass of oxygen - final mass of oxygen

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: m_1 \:  - \:  m_2}}} \\

{\bold{\sf{: \: ⟹ \:  \:  \:  \:  \:  584.84g \:  -  \: 453.1g}}} \\

We get,

{\bold{\sf{: \: ⟹ \:  \:  \:  \:  \:  131.74g}}} \\

{\bold{\sf{: \: ⟹  \:  \:  \:  \:  \: 0.131kg}}} \\

Hence 0.131 kg of oxygen is taken out of cylinder

Similar questions