Math, asked by neerajkumark238, 1 month ago

please solve this question ​

Attachments:

Answers

Answered by Anonymous
6

Answer

  • The value of x = 1.

Given

  •  \underline{\boxed{ \bold{{( {2}^{ - 1}  +  {4}^{ - 1}  +  {6}^{ - 1}  +  {8}^{ - 1} )} ^{x} = 1\cfrac{1}{24}}}}

To Find

  • The value of x.

Step By Step Explanation

Let's solve the equation to find the value of x.

\longmapsto\sf{{( {2}^{ - 1}  +  {4}^{ - 1}  +  {6}^{ - 1}  +  {8}^{ - 1} )} ^{x} = 1\cfrac{1}{24}} \\  \\ \longmapsto\underline{ \boxed{ \red{ \bold{{a}^{ - 1}  =  \cfrac{1}{a}} }}}  \:  \:  \:  \:  \:  \bigstar\\  \\\longmapsto\sf{ \bigg( \cfrac{1}{2} +  \cfrac{1}{4} +  \cfrac{1}{6}  +  \cfrac{1}{8} \bigg) }^{x}  =  \cfrac{25}{24}  \\  \\\longmapsto\bold{By \: Taking \: LCM} \downarrow  \\  \\\longmapsto \sf \bigg( {\cfrac{(1 \times 12) + (1 \times 6) +( 1 \times 4 )+ (1 \times 3)}{24} \bigg)}^{x}   =  \cfrac{25}{24}  \\  \\\longmapsto\sf { \bigg( \cfrac{12 + 6 + 4 + 3}{24} \bigg) =  \cfrac{25}{24}  }^{x}  \\ \\\longmapsto\sf \bigg({\cfrac{25}{24} \bigg)}^{x}   =  {\bigg( \cfrac{25}{24} \bigg)}^{1}   \\  \\  \longmapsto \underline{\boxed{ \bold{ \green{x = 1}}}} \:  \:  \:  \:  \:  \dag

Therefore, the value of x = 1.

__________________________

Answered by anshikakushwaha86
1

Step-by-step explanation:

  • this is correct answer
  • correct answer
Attachments:
Similar questions