Math, asked by Anonymous, 1 month ago

Please solve this question.​

Attachments:

Answers

Answered by sisirasreya
0

Answer:

I think option c,

Step-by-step explanation:

please mark me brainliest

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Thus, According to statement,

\rm :\longmapsto\:S_{2n} \:  =  \: 3S_n

\rm :\longmapsto\:\dfrac{2n}{2} \bigg(2a + (2n - 1)d \bigg)  = \dfrac{3n}{2} \bigg(2a + (n - 1)d\bigg)

\rm :\longmapsto\:2 \bigg(2a + (2n - 1)d \bigg)  = 3 \bigg(2a + (n - 1)d\bigg)

\rm :\longmapsto\:4a + (4n - 2)d = 6a + (3n - 3)d

\rm :\longmapsto\:4a + 4nd - 2d = 6a + 3nd - 3d

\rm \implies\:\boxed{ \tt{ \: 2a = nd + d \: }} -  -  - (1)

Now, Consider

\rm :\longmapsto\:\dfrac{S_{3n}}{S_n}

\rm \:  =  \:\dfrac{\dfrac{3n}{2} \bigg(2a + (3n - 1)d\bigg) }{\dfrac{n}{2} \bigg(2a + (n - 1)d \bigg) }

On substituting the values of 2a, we get

\rm \:  =  \:\dfrac{3 \bigg(nd + d+ 3nd - d\bigg) }{ \bigg(nd + d + nd - d \bigg) }

\rm \:  =  \:\dfrac{3 \bigg(4nd \bigg) }{ \bigg(2nd \bigg) }

\rm \:  =  \:6

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{S_{3n}}{S_n}  = 6 \: }}}

Similar questions