Math, asked by yogitabhandari0901, 1 month ago

Please solve this question​

Attachments:

Answers

Answered by shadowsabers03
9

We're asked to change the order of integration in,

\small\text{$\displaystyle\longrightarrow I=\int\limits_0^{\frac{a}{2}}\int\limits_{\frac{x^2}{a}}^{x-\frac{x^2}{a}}f(x,\ y)\ dy\ dx$}

Here the limits are,

  • \small\text{$0\leq x\leq\dfrac{a}{2}$}
  • \small\text{$\dfrac{x^2}{a}\leq y\leq x-\dfrac{x^2}{a}$}

Here,

  • limit for x is in terms of constants
  • limit for y is in terms of x

We need to change them such that,

  • limit for x is in terms of y
  • limit for y is in term of constants.

Graphical representation of the limits is depicted in fig. 1.

In this fig. the lines x = 0 and x = a/2, which depict the limit for x, pαss through the points (0, 0) and (a/2, a/4) respectively. Also these points are the minimum and maximum of the bounded region respectively.

So the limit for y in terms of constants is depicted by the lines y = 0 and y = a/4 and thus,

\small\text{$\longrightarrow\underline{0\leq y\leq\dfrac{a}{4}}$}

Now consider,

\small\text{$\longrightarrow y\geq\dfrac{x^2}{a}$}

\small\text{$\longrightarrow x^2-ay\leq0$}

\small\text{$\longrightarrow x\in[-\sqrt{ay},\ \sqrt{ay}]$}

For \small\text{$x\geq0,$}

\small\text{$\longrightarrow x\leq\sqrt{ay}$}

Consider,

\small\text{$\longrightarrow y\leq x-\dfrac{x^2}{a}$}

\small\text{$\longrightarrow x^2-ax+ay\leq0$}

\small\text{$\longrightarrow x\in\left[\dfrac{a-\sqrt{a^2-4ay}}{2},\ \dfrac{a+\sqrt{a^2-4ay}}{2}\right]$}

\small\text{$\longrightarrow x\in\left[\dfrac{a}{2}-\dfrac{\sqrt{a^2-4ay}}{2},\ \dfrac{a}{2}+\dfrac{\sqrt{a^2-4ay}}{2}\right]$}

For \small\text{$x\leq\dfrac{a}{2},$}

\small\text{$\longrightarrow x\geq\dfrac{a}{2}-\dfrac{\sqrt{a^2-4ay}}{2}$}

Thus the limit for x in terms of y will be,

\small\text{$\longrightarrow\underline{\dfrac{a-\sqrt{a^2-4ay}}{2}\leq x\leq\sqrt{ay}}$}

Graphical representation of new limits is depicted in fig. 2.

Hence the order of integration is changed in such a way that,

\small\text{$\displaystyle\longrightarrow\underline{\underline{I=\int\limits_0^{\frac{a}{4}}\int\limits_{\frac{a-\sqrt{a^2-4ay}}{2}}^{\sqrt{ay}}f(x,\ y)\ dx\ dy}}$}

Attachments:
Similar questions