Math, asked by lazylass, 1 month ago

please solve this question ​

Attachments:

Answers

Answered by Anonymous
14

Given :

  •  \sf a = \dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}
  •  \sf b = \dfrac{\sqrt{5} -\sqrt{2}}{\sqrt{5}+\sqrt{2}}

To prove :

  •  \sf 3a^2 +4ab -3b^2 = 4 + \dfrac{56}{3}\sqrt{10}

Solution :

Firstly we will rationalise a and b to solve the question further.

 \sf  \implies a = \dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}

 \sf  \implies a = \dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} \times  \dfrac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5}  +  \sqrt{2} }

 \sf  \implies a = \dfrac{(\sqrt{5}+\sqrt{2})^{2} }{(\sqrt{5})^{2} -(\sqrt{2})^{2} }

 \sf  \implies a = \dfrac{5 + 2 + 2 \sqrt{10} }{5 - 2 }

 \boxed{ \sf  \implies a = \dfrac{7 + 2 \sqrt{10} }{3}}

Similarly, rationalising b

 \sf  \implies b= \dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}

 \sf  \implies b= \dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}  \times \dfrac{ \sqrt{5}  -  \sqrt{2} }{ \sqrt{5} -  \sqrt{2}  }

 \sf  \implies b= \dfrac{(\sqrt{5} - \sqrt{2})^2}{(\sqrt{5})^{2}   -  (\sqrt{2})^{2} }

 \sf  \implies b= \dfrac{ {( \sqrt{5}) }^{2} +  (\sqrt{2} )^{2} - 2( \sqrt{5} )( \sqrt{2})  }{5 - 2 }

 \sf  \implies b= \dfrac{ 5 + 2- 2\sqrt{10}   }{3}

 \boxed{ \sf  \implies b= \dfrac{ 7- 2\sqrt{10}   }{3} }

We have to prove that,

 \sf\implies 3a^2 +4ab -3b^2 = 4 + \dfrac{56}{3}\sqrt{10}

Consider LHS and substitute values of a and b

\sf  \implies 3a^2 +4ab -3b^2

\sf  \implies 3\left[  \dfrac{7 + 2 \sqrt{10} }{3} \right]^2 +4\left[  \dfrac{7 + 2 \sqrt{10} }{3} \right]\left[  \dfrac{7 - 2 \sqrt{10} }{3} \right]-3\left[  \dfrac{7 + 2 \sqrt{10} }{3} \right]^{2}

\sf  \implies 3 \times  \dfrac{(7 + 2 \sqrt{10})^{2}  }{9}  +4\left[  \dfrac{(7 + 2 \sqrt{10})(7 - 2 \sqrt{10} ) }{9} \right]-3 \times \dfrac{(7 + 2 \sqrt{10})^{2}  }{9}

\sf  \implies \dfrac{( {7)}^{2}  +  {(2 \sqrt{10} )}^{2}  + 2(7)(2 \sqrt{10} )}{3}  +4\left[  \dfrac{(7)^{2}  -( 2 \sqrt{10})^{2} }{9} \right]- \dfrac{(7)^{2}  + (2 \sqrt{10})^{2} - 2(7)(2 \sqrt{10})   }{3}

\sf  \implies \dfrac{49 +  40  + 28 \sqrt{10}}{3}   + 4 \times \left[  \dfrac{49 - 40}{9} \right]- \dfrac{49 + 40 - 28 \sqrt{10}}{3}

\sf  \implies \dfrac{89+ 28 \sqrt{10}}{3}   + 4 \times \left[  \dfrac{9}{9} \right]- \dfrac{89- 28 \sqrt{10}}{3}

\sf  \implies \dfrac{89+ 28 \sqrt{10}}{3}   + 4  -  \dfrac{89- 28 \sqrt{10}}{3}

\sf  \implies \dfrac{89+ 28 \sqrt{10}  - (89 - 28 \sqrt{10}) }{3}   + 4

\sf  \implies \dfrac{89+ 28 \sqrt{10}  - 89  + 28 \sqrt{10} }{3}   + 4

\sf  \implies \dfrac{56\sqrt{10} }{3}   + 4

Hence the required result is proved.

Answered by Anonymous
34

 \color{red} \underline { \underline{ \bf {STEP-BY-STEP \:  \:  EXPLANATION :}}} \\  \\

\implies\tt a =  \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2} }  \:  \:  \: ...(given) \\

\implies\tt a =  \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2} }  \times  \frac{ \sqrt{5}  +  \sqrt{2}  }{ \sqrt{5}   +  \sqrt{2} }  \\

 \bf [ (a + b)(a - b) = {a}^{2}  -  {b}^{2} ] \\

\implies\tt a =  \frac{( \sqrt{5}  +  \sqrt{2} ) ^{2}  }{( \sqrt{5} -  \sqrt{2})  ( \sqrt{5}   +  \sqrt{2}) }  \\

 \bf [(a + b) ^{2} =  {a}^{2} + 2ab +  {b}^{2}   ] \\

\implies \tt a =  \frac{(\sqrt{5})^{2}   + 2 \sqrt{5} . \sqrt{2} +   (\sqrt{2}) ^{2}    }{ { (\sqrt{5} )}^{2} -  {( \sqrt{2} )}^{2}   }  \\

\implies  \tt a =   \frac{5 + 2 \sqrt{10} + 2 }{5 - 2}   \\

\implies  \boxed {\tt a =   \frac{7+ 2 \sqrt{10}}{3} }  \\  \\

\implies  \tt b=  \frac{ \sqrt{5}  -   \sqrt{2}  }{ \sqrt{5}   + \sqrt{2} }  \:  \:  \: ...(given) \\

\implies  \tt b =  \frac{ \sqrt{5}  - \sqrt{2}  }{ \sqrt{5}   +  \sqrt{2} }  \times  \frac{ \sqrt{5}  -  \sqrt{2}  }{ \sqrt{5}   -   \sqrt{2} }  \\

\implies  \tt b=  \frac{( \sqrt{5}   -  \sqrt{2} ) ^{2}  }{( \sqrt{5}  + \sqrt{2})  ( \sqrt{5}    -   \sqrt{2}) }  \\

 \bf [(a  -  b) ^{2} =  {a}^{2}  -  2ab +  {b}^{2}   ] \\

\implies  \tt b=  \frac{(\sqrt{5})^{2}    -  2 \sqrt{5} . \sqrt{2} +   (\sqrt{2}) ^{2}    }{ { (\sqrt{5} )}^{2} -  {( \sqrt{2} )}^{2}   }  \\

\implies  \boxed{ \tt b =   \frac{7 - 2 \sqrt{10}}{3} }  \\  \\

\implies  \tt 3 {a}^{2}  + 4ab - 3 {b}^{2}  = 4 +  \frac{56}{3}  \sqrt{10}  \\

\implies  \tt 3 {( \frac{7 + 2 \sqrt{10} }{3}) }^{2}  + 4( \frac{7 + 2 \sqrt{10} }{3}) ( \frac{7 - 2 \sqrt{10} }{3})  - 3 {( \frac{7 - 2 \sqrt{10} }{3} )}^{2}  = 4 +  \frac{56}{3}  \sqrt{10}  \\

\implies  \tt 3 {( \frac{7 + 2 \sqrt{10} }{3}) }( \frac{7 + 2 \sqrt{10} }{3})   +  \frac{4(7 + 2 \sqrt{10} )(7 - 2 \sqrt{10}) }{9}  - 3 {( \frac{7 - 2 \sqrt{10} }{3} )}( \frac{7 - 2 \sqrt{10} }{3}  ) = 4 +  \frac{56}{3}  \sqrt{10}  \\

\implies  \tt  \frac{ {7}^{2} + (2 \sqrt{10})^{2} + 2(7)(2 \sqrt{10}  ) }{3}    +  \frac{4( {7}^{2} -  {(2 \sqrt{10}) }^{2} )}{9}  -  \frac{ {7}^{2} + (2 \sqrt{10})^{2}  -  2(7)(2 \sqrt{10}  ) }{3}  = 4 +  \frac{56}{3}  \sqrt{10}  \\

\implies  \tt  \frac{ 49 + 40 + 28\sqrt{10}   }{3}    +  \frac{4( 49 -  40 )}{9}  -  \frac{49 +40 -  28 \sqrt{10}  }{3}  = 4 +  \frac{56}{3}  \sqrt{10}  \\

 \implies  \tt \frac{ 89+ 28\sqrt{10}   }{3}    +  \frac{4( 9)}{9}  -  \frac{89 -  28 \sqrt{10}  }{3}  = 4 +  \frac{56}{3}  \sqrt{10}  \\

\implies  \tt 4  + \frac{ 89+ 28\sqrt{10}   }{3}    -  \frac{89 -  28 \sqrt{10}  }{3}  = 4 +  \frac{56}{3}  \sqrt{10}  \\

\implies  \tt 4  + \frac{ 89+ 28\sqrt{10}   - (89 - 28 \sqrt{10} ) }{3}     = 4 +  \frac{56}{3}  \sqrt{10}  \\

\implies  \tt 4  + \frac{ 89+ 28\sqrt{10}   - 89  + 28 \sqrt{10} }{3}     = 4 +  \frac{56}{3}  \sqrt{10}  \\

\implies  \tt 4  + \frac{ 56\sqrt{10} }{3}     = 4 +  \frac{56}{3}  \sqrt{10}  \\

\implies  \bf LHS  = RHS \\

 \bf \underline{ \:  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:Hence  \: Proved }

Similar questions