Math, asked by AGEETHASRI, 1 year ago

please solve this question

Attachments:

Answers

Answered by TRISHNADEVI
8
In this figure,

\angle {AOC} = {BOD} [Opposite Angle]

=>\angle{AOC} = 35°

\angle {BOF} = {AOE}

=>\angle{BOF} = 40°


Now,
\angle{AOE} + {DOE} + {BOD} = 180°

=> 40° + \angle{DOE} + 35° = 180°

=> \angle {DOE} = 180° - (40°+35°)<br />=&gt;{DOE} = 105°

•°• \angle{COF} = {DOE}

=> \angle {COF} = 105°


 \ boxed{ANSWER}

[tex]\angle {AOC} = 35°

{COF} = 105°

{DOE} = 105°

{BOF} = 40°
Answered by adinann
0
Given,

 \angle \: AOE = 40° \\ \angle \: BOD = 35° \\ \\ Now, \\ \angle \: AOE \: + \angle \: BOD + \angle \: EOD = 180° \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ... \: (linear \: pair) \\ \\ 40° + 35° + \angle \: EOD = 180° \\ \\ \angle \: EOD = 180° - 75" \\ \\ \bf \: \angle \: EOD = 105° \\ \\
 \angle \: EOD = \angle \: COF \\ \: \: \: \: \: \: \: \: \: \: \: ... (vertically \: opposite \: angle) \\ \\ \bf \: \angle \: COF = 105°
Similarly, \\ \angle \: AOE = \angle \: BOF \\ \angle \: BOD = \angle \: COA \\ \\ \bf \: \angle \: BOF = 40° \\ \bf \: \angle \: COA = 35°

If any doubt, please ask :)

adinann: ^-^
Similar questions