Math, asked by sangeeta99, 1 year ago

please solve this question

Attachments:

Answers

Answered by RabbitPanda
3

▪2x² - 5x + 7

a = 2 , b = - 5 , c = 7


α and β are the zeros of given polynomial


we know that .......

sum of zeros = α + β

                      = -b/a

                      = 5/2


product of zeros = c/a=7/2


2α + 3β and 3α + 2β are zeros of a polynomial......


sum of zeros = 2α + 3β+ 3α + 2β

                      = 5α + 5β

                      = 5 [ α + β]

                     = 5 × 5/2

                    = 25/2


product of zeros = (2α + 3β)(3α + 2β)

                          = 2α [ 3α + 2β] + 3β [3α + 2β]

                         = 6α² + 4αβ + 9αβ + 6β²

                         = 6α² + 13αβ +  6β²

                         = 6 [ α² + β² ] + 13αβ

                         = 6 [ (α + β)² - 2αβ ] + 13αβ

                         = 6 [ ( 5/2)² - 2 × 7/2 ] + 13× 7/2

                         = 6 [ 25/4 - 7 ] + 91/2

                         = 6 [ 25/4 - 28/4 ] + 91/2

                         = 6 [ -3/4 ] + 91/2

                        = -18/4 + 91/2

                        = -9/2 + 91/2

                        = 82/2

                        = 41

                                                                           


a quadratic polynomial is given by :-


k { x² - (sum of zeros)x + (product of zeros) }


k {x² - 5/2x + 41}


k = 2


2 {x² - 5/2x + 41 ]


2x² - 5x + 82   is the required polynomial




Hope u like it


@skb

Answered by Ashishkumar098
3
 \bold {\huge{Ello!!}}

<b >Here's your answer

________________________

Given polynomial , 2x² - 5x + 7

By compared with ax^2 + bx + c , we get

a = 2

b = - 5

c = 7

α and β are the zeros of the polynomial

So ,

• sum of zeros

= α + β

= ( - b ) / a

= - ( - 5 ) / 2

= 5 / 2 -------------- ( i )

• product of zeros

= α × β

= c / a

= 7 / 2 ---------------- ( ii )

Given , zeros of the required polynomial are ( 2α + 3β ) and ( 3α + 2β )

Now ,

• sum of zeros

= ( 2α + 3β ) + ( 3α + 2β )

= 5α + 5β

= 5 ( α + β ) [ • Putting the value of ( α + β ) ]

= 5 × 5 / 2

= 25 / 2

• product of zeros

= (2α + 3β) (3α + 2β)

= 2α [ 3α + 2β] + 3β [3α + 2β]
                         
= 6α² + 4αβ + 9αβ + 6β²
                         
= 6α² + 13αβ +  6β²
                     
= 6 [ α² + β² ] + 13αβ
                         
= 6 [ (α + β )² - 2αβ ] + 13αβ
                         
= 6 [ ( 5 / 2 )² - 2 × 7 / 2 ] + 13× 7 / 2 [ • Putting the values ]
                         
= 6 [ 25 / 4 - 7 ] + 91 / 2
                       
= 6 [ 25 / 4 - 28 / 4 ] + 91 / 2
                     
= 6 [ - 3 / 4 ] + 91 / 2
                       
= - 18 / 4 + 91 / 2
                       
= -9 / 2 + 91 / 2
                       
= ( - 9 + 91 ) / 2

= 82 / 2
                       
= 41

• One quadratic polynomial is given by :-

k { x² - (sum of zeros) x + (product of zeros) }

= k { x² - ( 25 / 2 ) x + 41 }

= 2 { x² - 25x / 2 + 41 } [ • k = 2 ]

= 2x² - 25x + 82

So , the required polynomial is 2x² - 25x + 82.

___________________________

<b><u><marquee direction> Hope it helps !!
Similar questions