please solve this question
Attachments:
Answers
Answered by
3
Hello,
q(x) = x³ + 2x² + a
p(x) = x⁵ - x⁴ - 4x³ + 3x² + 3x + b
p(x) = x⁵ - x⁴ - 4x³ + 3x² + 3x + b
= x⁵ + 2x⁴ + ax² - 3x⁴ - 4x³ + (3 - a)x² + 3x + b
= x²(x³ + 2x² + a) - 3x⁴ - 6x³ - 3ax + 2x³ + (3 - a)x² + 3(1 + a)x + b
= x²(x³ + 2x² + a) - 3x(x³ + 2x² + a) + 2x³ + 4x² + 2a - (a + 1)x² + 3(1 + a)x + (b - 2a)
= x²(x³ + 2x² + a) - 3x(x³ + 2x² + a) + 2((x³ + 2x² + a) - (a + 1)x² + 3(1 + a)x + (b - 2a)
= (x³ + 2x² + a)(x² - 3x + 2) - (a + 1)x² + 3(1 + a)x + (b - 2a)
= (x² - 3x + 2).q(x) - (a + 1)x² + 3(1 + a)x + (b - 2a)
If p(x) and q(x) share the same roots, then p(x) is divisible by q(x).
If p(x) is divisible by q(x), the remainder -(a+1)x²+3(1+a)x+(b-2a) must be nil for any x.
This means each and every coefficient of this remainder polynomial must be nil:
{ -(a + 1) = 0
{ 3(1 + a) = 0
{ b - 2a = 0
The solution is obviously:
{ a = -1
{ b = -2
With this values of a and b, we would get:
p(x) = (x² - 3x + 2).q(x)
and thus would the roots of q(x) forcefully be also roots of p(x).
And the roots of p(x) that are not roots of q(x) are evidently the roots of:
x² - 3x + 2 = 0
x² - 2x - x + 2 = 0
x(x - 2) - (x - 2) = 0
(x - 2)(x - 1) = 0
And they are x=1 or x=2
q(x) = x³ + 2x² - 1
= x³ + x² + x² - 1
= x²(x + 1) + (x - 1)(x + 1)
= (x + 1)(x² + x - 1)
= (x + 1)[x + 2x(½) + (½)² - 5/4]
= (x + 1)[(x + ½)² - ((√5)/2)²]
= (x + 1)[x + (1 - √5)/2)][x + (1 + √5)/2)]
Conclusion:
a=-1 and b=-2
Roots of q(x): { -1; (-1 + √5)/2; (-1 - √5)/2 }
Roots of p(x): { 1; 2; -1; (-1 + √5)/2; (-1 - √5)/2 }
Similar questions
Social Sciences,
7 months ago
Social Sciences,
7 months ago
Math,
7 months ago
Biology,
1 year ago
English,
1 year ago