please solve this question ............
Attachments:
Answers
Answered by
2
Answer:
a = 3, b = -3
Step-by-step explanation:
Let f(x) = 2x³ + ax² + bx - 2.
(i)
Since, (2x - 3) is a factor of f(x), f(3/2) = 0.
⇒ 2(3/2)³ + a(3/2)² + b(3/2) - 2 = 7
⇒ (27 + 9a + 6b)/4 = 9
⇒ 27 + 9a + 6b = 36
⇒ 9a + 6b - 9 = 0
⇒ 3a + 2b - 3 = 0
⇒ 3a + 2b = 3
(ii)
Since, (x + 3) is a factor of f(x), f(-3) = 0
⇒ 2(-3)³ + a(-3)² + b(-3) - 2 = -20
⇒ 9a - 56 = 20 + 3b
⇒ 9a = 3b + 36
⇒ 9a - 3b - 36 = 0
⇒ 3a - b - 12 = 0
⇒ 3a - b = 12
On solving (i) & (ii), we get
3a + 2b = 3
3a - b = 12
-------------------
3b = -9
b = -3
Substitute b = -3 in (i), we get
⇒ 3a + 2b = 3
⇒ 3a + 2(-3) = 3
⇒ 3a - 6 = 3
⇒ a = 3
Therefore, the values are a = 3, b = -3.
Hope it helps!
Similar questions