Math, asked by sakshammore11, 26 days ago

please solve this question and please send the photo of the solution ​

Attachments:

Answers

Answered by TheGodWishperer
1

To find x in:-

  \small \mathtt{  log_{4}(2log_{3}(1 +  log_{2}(1 + 3log_{3}x)=\frac{1}{2} }

Solution:-

Using property of log.

 \mathtt{ 2 log_{3}(1 +  log_{2}(1 + 3 log_{3}x) =   {4}^{\frac{1}{2} }}

  \divideontimes  \mathtt{\: 2 log_{3}(1 +  log_{2}(1 + 3 log_{3}x) =   2}

  \divideontimes \mathtt{\:  log_{3}(1 +  log_{2}(1 + 3 log_{3}x) =    \frac{2}{2} }

\divideontimes  \mathtt{\:  log_{3}(1 +  log_{2}(1 + 3 log_{3}x) =   1}

\divideontimes \mathtt{\:  1 +  log_{2}(1 + 3 log_{3}x) =    {3}^{1}}

\divideontimes \:   \mathtt{ log_{2}(1 + 3 log_{3}x) =    3 - 1}

\divideontimes \: \mathtt{   log_{2}(1 + 3 log_{3}x) =    2}

\divideontimes \:    \mathtt{1 + 3 log_{3}x=     {2}^{2}}

\divideontimes \:  \mathtt{   3 log_{3}x=     4 - 1}

\divideontimes \:  \mathtt{   log_{3}x=    \frac{3}{3}}

\divideontimes \: \mathtt{    log_{3}x=    1}

\divideontimes \:  \:  \:  \:  \: \mathtt{    x=    {3}^{1} }

 \huge\mathtt {{\divideontimes \:     x=    3}}

Similar questions