Math, asked by chankidhami5, 10 hours ago

Please solve this Question and please upload the steps.

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \sin^2\bigg(\frac{A}{2}\bigg)+\sin^2\bigg(\frac{B}{2}\bigg)+\sin^2\bigg(\frac{C}{2}\bigg)\\

 =  \frac{1 -   \cos(A) }{2}+ \frac{1 - \cos(B)}{2}+ \frac{1 - \cos(C)}{2}\\

 =  \frac{1}{2} -   \frac{  \cos(A) }{2}+ \frac{1}{2} -   \frac{\cos(B)}{2}+ \frac{1}{2}  -  \frac{\cos(C)}{2}\\

 =  \frac{3}{2} - \bigg \{   \frac{  \cos(A) }{2}+ \frac{\cos(B)}{2}+  \frac{\cos(C)}{2} \bigg \}\\

 =  \frac{3}{2} -  \frac{1}{2} \bigg \{   \cos(A)+\cos(B)+ \cos(C) \bigg \}\\

 =  \frac{3}{2} -  \frac{1}{2} \bigg \{  2 \cos \bigg( \frac{A + B }{2}\bigg) \cos \bigg( \frac{A  -  B }{2}\bigg) +1 -  2\sin^{2}  \bigg( \frac{C}{2} \bigg)  \bigg \}\\

 =  \frac{3}{2} -  \frac{1}{2} \bigg \{  2 \cos \bigg( \frac{\pi - C}{2}\bigg) \cos \bigg( \frac{A  -  B }{2}\bigg) - 2\sin^{2}  \bigg( \frac{C}{2} \bigg)  \bigg \} -  \frac{1}{2} \\

 =  1 -  \frac{1}{2} \bigg \{  2 \cos \bigg( \frac{\pi}{2} -  \frac{C}{2}\bigg) \cos \bigg( \frac{A  -  B }{2}\bigg) - 2\sin^{2}  \bigg( \frac{C}{2} \bigg)  \bigg \} \\

 =  1 -  \frac{1}{2} \bigg \{  2 \sin\bigg(  \frac{C}{2}\bigg) \cos \bigg( \frac{A  -  B }{2}\bigg) - 2\sin^{2}  \bigg( \frac{C}{2} \bigg)  \bigg \} \\

 =  1 -  \frac{1}{2} \bigg[ 2 \sin\bigg(  \frac{C}{2}\bigg) \bigg \{ \cos \bigg( \frac{A  -  B }{2}\bigg) - \sin  \bigg( \frac{C}{2} \bigg)  \bigg \}  \bigg]  \\

 =  1 -  \frac{1}{2} \times 2 \bigg[ \sin\bigg(  \frac{C}{2}\bigg) \bigg \{ \cos \bigg( \frac{A  -  B }{2}\bigg) - \sin  \bigg( \frac{\pi - ( A   +  B )}{2} \bigg)  \bigg \}  \bigg]  \\

 =  1 -   \bigg[ \sin\bigg(  \frac{C}{2}\bigg) \bigg \{ \cos \bigg( \frac{A  -  B }{2}\bigg) - \sin  \bigg( \frac{\pi}{2} - \frac{ A   +  B }{2} \bigg)  \bigg \}  \bigg]  \\

 =  1 -   \bigg[ \sin\bigg(  \frac{C}{2}\bigg) \bigg \{ \cos \bigg( \frac{A  -  B }{2}\bigg) - \cos  \bigg( \frac{ A   +  B }{2} \bigg)  \bigg \}  \bigg]  \\

 =  1 -   \bigg[ \sin\bigg(  \frac{C}{2}\bigg) .2 \sin \bigg( \frac{A  }{2}\bigg) \sin  \bigg( \frac{   B }{2} \bigg)   \bigg]  \\

 =  1 -   \bigg[2 \sin \bigg( \frac{A  }{2}\bigg) \sin  \bigg( \frac{   B }{2} \bigg) \sin\bigg(  \frac{C}{2}\bigg)  \bigg]  \\

 =  1 -  2 \sin \bigg( \frac{A  }{2}\bigg) \sin  \bigg( \frac{   B }{2} \bigg) \sin\bigg(  \frac{C}{2}\bigg)  \\

Similar questions