Math, asked by sumitabhakat220, 9 months ago

please solve this question anyone ​

Attachments:

Answers

Answered by Anonymous
15

Solution

To Prove

 \sf \:  \dfrac{1}{ {sin}^{2} \theta }  -  \dfrac{1}{ {sin}^{2}  \phi}  =  \dfrac{ {cos}^{2} \theta -  {cos}^{2}   \phi}{ {sin}^{2}  \theta.sin {}^{2} \phi }

LHS

 \sf \:  \dfrac{1}{ {sin}^{2} \theta }  -  \dfrac{1}{ {sin}^{2}  \phi}   \\  \\  \dashrightarrow \:  \sf \:  \dfrac{sin {}^{2} \phi \:  -  {sin}^{2}   \theta}{sin {}^{2} \theta \: {sin}^{2}  \phi }

Since,

sin²∅ + cos²∅ = 1

sin²∅ = 1 - cos²∅

Thus,

 \dashrightarrow \:  \sf \:  \dfrac{(1 -   {cos}^{2}  \phi) - ( 1 -  {cos}^{2}  \theta)}{sin {}^{2} \theta \: . {sin}^{2}  \phi }  \\  \\  \dashrightarrow \:  \sf \:  \dfrac{ {cos}^{2} \theta \:  -  {cos}^{2} \phi \:  + 1 - 1 }{ {sin}^{2} \theta . {sin}^{2}  \phi}  \\  \\  \dashrightarrow \:  \sf \:  \frac{ {cos}^{2} \theta  -   cos {}^{2}  \phi }{ {sin}^{2} \theta. {sin}^{2}   \phi}

Henceforth, ProveD

Answered by Anonymous
6

❏ Question:-

@ Prove that

\implies\sf{\ \  {\dfrac{1}{\sin^2\theta}-\dfrac{1}{\sin^2\phi}=\dfrac{\cos^2\theta-\cos^2\phi}{\sin^2\theta\sin^2\phi}}}

❏ Solution:-

\blacksquare\:\:\:\sf{\ \  {L.H.S.=\dfrac{1}{\sin^2\theta}-\dfrac{1}{\sin^2\phi}}}

\implies\sf{\ \ {L.H.S.=\dfrac{\sin^2\phi-\sin^2\theta}{\sin^2\theta\sin^2\phi}}}

\implies\sf{\ \ {L.H.S.=\dfrac{(1-\cos^2\phi)-(1-\cos^2\theta)}{\sin^2\theta\sin^2\phi}}}

\implies\sf{\ \ {L.H.S.=\dfrac{\cancel1-\cos^2\phi-\cancel1+\cos^2\theta}{\sin^2\theta\sin^2\phi}}}

\implies\sf{\ \ {L.H.S.=\dfrac{\cos^2\theta-\cos^2\phi}{\sin^2\theta\sin^2\phi}}}

\implies\boxed{\sf{\ \ {L.H.S.=R.H.S.}}} (proved)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions