Math, asked by aishwaryasinha88, 1 month ago

please solve this question anyone-

 \rm -  \dfrac{1}{2}  {a}^{2}  {b}^{2}c +  \dfrac{1}{3} a {b}^{2} c -  \dfrac{1}{4}abc^{2}  -  \dfrac{1}{5} c {b}^{2}  {a}^{2}  +  \dfrac{1}{6} c {b}^{2}  {a} -  \dfrac{}{7}  {c}^{2}ab +  \dfrac{1}{8}  c {a}^{2} b

Answers

Answered by MrImpeccable
16

ANSWER:

To Solve:

 \:\:\bullet\:\:\rm -\dfrac{1}{2}a^2b^2c+\dfrac{1}{3}ab^2c-\dfrac{1}{4}abc^2-\dfrac{1}{5}cb^2a^2+\dfrac{1}{6}cb^2a-\dfrac{1}{7}c^2ab+\dfrac{1}{8}ca^2b

Solution:

We are given that,

 \implies\rm -\dfrac{1}{2}a^2b^2c+\dfrac{1}{3}ab^2c-\dfrac{1}{4}abc^2-\dfrac{1}{5}cb^2a^2+\dfrac{1}{6}cb^2a-\dfrac{1}{7}c^2ab+\dfrac{1}{8}ca^2b

Taking abc common,

 \implies\rm abc\left(-\dfrac{1}{2}ab+\dfrac{1}{3}b-\dfrac{1}{4}c-\dfrac{1}{5}ba+\dfrac{1}{6}b-\dfrac{1}{7}c+\dfrac{1}{8}a\right)

Rearranging the terms,

 \implies\rm abc\left[\left(-\dfrac{1}{2}ab-\dfrac{1}{5}ba\right)+\left(\dfrac{1}{3}b+\dfrac{1}{6}b\right)-\left(\dfrac{1}{4}c+\dfrac{1}{7}c\right)+\dfrac{1}{8}a\right]

So,

 \implies\rm abc\left[-\left(\dfrac{ab}{2}+\dfrac{ab}{5}\right)+\left(\dfrac{b}{3}+\dfrac{b}{6}\right)-\left(\dfrac{c}{4}+\dfrac{c}{7}\right)+\dfrac{a}{8}\right]

So, taking LCM,

 \implies\rm abc\left[\left(-\dfrac{5ab+2ab}{10}\right)+\left(\dfrac{2b+b}{6}\right)-\left(\dfrac{7c+4c}{28}\right)+\dfrac{a}{8}\right]

 \implies\rm abc\left[\left(-\dfrac{7ab}{10}\right)+\left(\dfrac{3b}{6}\right)-\left(\dfrac{11c}{28}\right)+\dfrac{a}{8}\right]

 \implies\rm abc\left[-\dfrac{7ab}{10}+\dfrac{b}{2}-\dfrac{11c}{28}+\dfrac{a}{8}\right]

Taking LCM,

 \implies\rm abc\left[\dfrac{(-7ab\times28)+(b\times140)-(11c\times10)+(a\times35)}{280}\right]

So,

 \implies\rm abc\left[\dfrac{-196ab+140b-110c+35a}{280}\right]

Hence,

\implies\rm\bf abc\left(\dfrac{35a+140b-110c-196ab}{280}\right)

Similar questions