Math, asked by sadika34, 8 months ago

please solve this question as soon as possible ​

Attachments:

Answers

Answered by saounksh
1

ᴀɴsᴡᴇʀ

  • \boxed{\bf{ S_n = 2^{n+1} + \frac{3n^2}{2} + \frac{n}{2}-2}}

ɢɪᴠᴇɴ

  • nth term of a series is given by

 \:\:\:\:\:\:\:\:\:\: t_n = 2^n + 3n - 1

ᴛᴏ ғɪɴᴅ

  • Sum upto nth term.

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

Now,

 S_n = \sum \limits_{r =1}^{n} [2^r + 3r - 1]

 S_n = \sum \limits_{r =1}^{n}2^r + 3\sum \limits_{r =1}^{n}r - \sum \limits_{r =1}^{n}1

 S_n = \frac{2(2^n-1)}{2-1} + 3\frac{n(n+1)}{2} - n

 S_n = 2(2^n-1)+ 3\frac{n^2 + n}{2} - n

 S_n = 2^{n+1} - 2 + 3\frac{n^2}{2} + 3\frac{n}{2}- n

 S_n = 2^{n+1} - 2 + 3\frac{n^2}{2} + \frac{n}{2}

 S_n = 2^{n+1} + \frac{3n^2}{2} + \frac{n}{2} - 2

Similar questions