Math, asked by davpwn8c15, 4 months ago

Please solve this question by step by step
square and square roots​

Attachments:

Answers

Answered by ItzBrainlyBeast
48

\LARGE\textbf{\underline{\underline{Given :-}}}

\large\texttt{↦ Area of the square field = 60025 m²}\\\\\large\texttt{↦ Speed of the cyclist = 5 m/s .}

\LARGE\textbf{\underline{\underline{To find  :-}}}

\large\texttt{↦ Time required to reach the starting point = ?}

\LARGE\textbf{\underline{\underline{Formula :-}}}

\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{green}{$Area_{ ( \: Square \: ) } = Side^{2}$}}}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{green}{$ Time = \cfrac{ Distance}{Speed}$}}}

\LARGE\textbf{\underline{\underline{Solution :-}}}

  • First we have to find the side of the square field :-

\large\: \bigstar\textsf\textcolor{orange}{\: \: \: $Area _ { ( \: Square \: ) } = Side ^ {2}$}\\\\\\\large: \: \Longrightarrow\textsf{60025 = Side²}\\\\\\\large: \: \Longrightarrow\textsf{$\sqrt{60025}= Side$}\\\\\\\large: \: \Longrightarrow\textsf{$\sqrt{245 × 245 } = Side $}\\\\\\\large: \: \Longrightarrow\textsf{245 = Side}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{Side = 245 m.}}}

  • As we know that all the sides of the square are equal .

  • So , the cyclist have to travel = 245 × 4 = 980 m .

  • Now we have to calculate the time he will take the reach the starting point .

  • By using Time Formula :-

\large\: \bigstar\textsf\textcolor{orange}{\: \: \:  $ Time = \cfrac{Distance}{Speed}$}\\\\\\\large: \: \Longrightarrow\textsf{$= \cfrac{980}{5}$}\\\\\\\large: \: \Longrightarrow\textsf{$ = \cancel\cfrac{980}{5}$}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{Time = 198 sec .}}}

  • So the cyclist will take 198 sec the reach the starting point .
Answered by Anonymous
11

Area =60025 m square

let the length be x.

x^2=60025

So x= 245 m

Perimeter=4*x= 980 m

Speed =18 km/h =18*5/18 m/s =5 m/s

Time= distance/speed

=980/5

=196 s

So he will return to the starting point in 196 s.

\huge\pink{}

Similar questions