Math, asked by sonusanjai2017, 1 year ago

please solve this question by using a pen and a paper.​

Attachments:

divergent07: easy

Answers

Answered by Anonymous
10

\underline{\underline{\bold{Question:}}}

\bold{Prove\:\:that:}\\\\\\\tt{sin\:\theta(1+tan\:\theta)+cos\:\theta(1+cot\:\theta)=sec\;\theta+cosec\:\theta.}

\tt{Solution:}\\\\\\\underline{\textbf{Solving L.H.S}}\\\\\\\tt{=sin\:\theta(1+tan\:\theta)+cos\:\theta(1+cot\:\theta)}

\tt{=sin\:\theta\left(1+\dfrac{sin\:\theta}{cos\:\theta}\right)+cos\theta\left(1+\dfrac{cos\theta}{sin\theta}\right)}\\\\\\\tt{=sin\theta\left(\dfrac{cos\theta+sin\theta}{cos\theta}\right)+cos\theta\left(\dfrac{sin\theta+cos\theta}{sin\theta}\right)}\\\\\\\tt{=\left(\dfrac{sin\theta+cos\theta}{1}\right)\left(\dfrac{sin\theta}{cos\theta}+\dfrac{cos\theta}{sin\theta}\right)}\\\\\\\tt{=\left(\dfrac{sin\theta+cos\theta}{1}\right)\left(\dfrac{sin^2\theta+cos^2\theta}{cos\theta\:sin\theta}\right)}

\tt{=\left(\dfrac{sin\theta+cos\theta}{1}\right)\left(\dfrac{1}{sin\theta\:cos\theta}\right)}\\\\\\\tt{=\dfrac{sin\theta+cos\theta}{sin\theta\:cos\theta}}\\\\\\\tt{=\dfrac{sin\theta}{sin\theta\:cos\theta}+\dfrac{cos\theta}{sin\theta\:cos\theta}}\\\\\\\tt{=sec\theta+cosec\theta.}\\\\\\\mathfrak{Hence\:Proved.}


sonusanjai2017: super se bhi uppper
sakshi7048: awesome answer shona ✌✌
Anonymous: :)
Haezel: Brilliant
Anonymous: Thanks mam ..
Similar questions