Math, asked by Jahnavidax, 1 year ago

Please solve this question class 10

Attachments:

Answers

Answered by mathdude200
1
please find the attachment
Attachments:
Answered by TheCommando
19

Question:

Prove that  \dfrac{1 + cosA + sinA}{1+cosA - sin A} = \dfrac{1+ sinA}{cosA}

Solution: 1

RHS =  \dfrac{1+ sinA}{cosA}

LHS =  \dfrac{1 + cosA + sinA}{1+cosA - sin A}

Dividing numerator and denominator from cos A

 = \dfrac{\dfrac{1}{cosA} + \dfrac{cosA}{cosA} + \dfrac{sinA}{cosA}}{\dfrac{1}{cosA} + \dfrac{cosA}{cosA} - \dfrac{sinA}{cosA}}

 = \dfrac{secA + 1 + tan A}{secA + 1 - tan A}

 = \dfrac{secA + tanA + ({sec}^{2}A - {tan}^{2}A)}{secA + 1 - tan A}

 = \dfrac{secA + tanA + (secA- tanA)(secA + tanA)}{secA + 1 - tan A}

 = \dfrac{(secA+ tanA)(1 + secA - tanA)}{secA + 1 - tan A}

 = \dfrac{(secA+ tanA)\cancel{(1 + secA - tanA)}}{\cancel{secA + 1 - tan A}}

 = \dfrac{1}{cosA}+ \dfrac{sinA}{cosA}

 = \dfrac{1 + sin A}{cosA} = RHS

Hence, proved.

☆Identities used☆

 a^{2} - b^{2} = (a+b)(a-b)

 1 + {tan}^{2}\theta = {sec}^{2}\theta

 sec\theta = \dfrac{1}{cos\theta}

 tan\theta = \dfrac{sin\theta}{cos\theta}

Similar questions