Math, asked by brainly12378, 1 month ago

Please Solve this question correctly and step by step​

Attachments:

Answers

Answered by ridhya77677
11

Answer:

(a) \frac{1}{ \sqrt{3} +  \sqrt{2} - 1  }  \\ rationalising \: the \: denominator, \\ =   \frac{1}{\sqrt{3} + ( \sqrt{2} - 1)}   \times  \frac{\sqrt{3}  -  ( \sqrt{2} - 1)}{\sqrt{3}  - (  \sqrt{2} - 1)}  \\  =  \frac{\sqrt{3}  -  ( \sqrt{2} - 1)}{ { (\sqrt{3}) }^{2}  -  {( \sqrt{2} - 1) }^{2} }  \\  =  \frac{ \sqrt{3}  -  \sqrt{2} + 1 }{3 - 2 - 1 + 2 \sqrt{2} }  \\  = \frac{ \sqrt{3}  -  \sqrt{2} + 1 }{ 2 \sqrt{2} }  \\  = \frac{ \sqrt{3}  -  \sqrt{2} + 1 }{ 2 \sqrt{2} }   \times  \frac{ \sqrt{2} }{ \sqrt{2} }  \\  =  \frac{  \sqrt{2} (\sqrt{3}  -  \sqrt{2} + 1 )}{ 4}

_______________________________________

(b) \frac{1}{3 -2 \sqrt{2} +  \sqrt{5}  }  \\  =  \frac{1}{ (\sqrt{5 } + 3) - 2 \sqrt{2}  }  \times  \frac{(\sqrt{5 } + 3)  + 2 \sqrt{2}  }{(\sqrt{5 } + 3)  +  2 \sqrt{2}  }  \\  =  \frac{\sqrt{5 } + 3  +  2 \sqrt{2}  }{ { (\sqrt{5} + 3) }^{2} -  ({2 \sqrt{2} )}^{2}  }  \\  =  \frac{\sqrt{5 } + 3  +  2 \sqrt{2}}{5  + 9 + 6 \sqrt{5} - 8 }  \\  =  \frac{\sqrt{5 } + 3  +  2 \sqrt{2}}{6 - 6 \sqrt{5} }  \\  =  \frac{\sqrt{5 } + 3  +  2 \sqrt{2}}{6(1 -  \sqrt{5}) } \times  \frac{1 +  \sqrt{5} }{1 +  \sqrt{5} }   \\  =  \frac{(\sqrt{5 } + 3  +  2 \sqrt{2})(1 +  \sqrt{5} )}{6(1 - 5)}  \\  =  \frac{ \sqrt{5} + 3 + 2 \sqrt{2}   + 5 + 3\sqrt{5}  + 2 \sqrt{10} }{ - 24}  \\  =  \frac{2 \sqrt{2} + 2 \sqrt{10}  + 4 \sqrt{5}  + 8 }{ - 24}

Answered by pradhanmimansha0510
2

Answer:

hope it will be helpful to you

Attachments:
Similar questions