Physics, asked by varmasunny2004, 8 months ago

please solve this question
How this relation came?​

Attachments:

Answers

Answered by IamIronMan0
1

Answer:

All you need to do is apply rotational energy conservation . I.e.

 \frac{1}{2} I { \omega}^{2}  = const.

Now we need ratio of mass and radius for momentum of inertia .

So Given that

48.8 water leaks or 51.2 % remains , so

 \frac{m_2}{m_1}  =  \frac{51.2}{100}  =  \frac{512}{1000}

Now note that mass = density × volume , and volume is proportional to cube of radius so

 \frac{m_2}{m_1}  =  (\frac{r_2}{r_1} ) {}^{3}  =  \frac{512}{1000}  \\  \\  \implies\frac{r_2}{r_1} =    \sqrt[3]{\frac{512}{1000}}  =  \frac{8}{10}  =  \frac{4}{5}

So now

 \frac{1}{2} I_1 { \omega_1}^{2}  =  \frac{1}{2} I _2{ \omega_2}^{2}  \\  \\  \frac{2}{5}  m  _1{r_1}^{2} \times { \omega_1}^{2}   =  \frac{2}{5}  m  _2{r_2}^{2}{ \omega_2}^{2}  \\  \\ { \omega_2}^{2}  = \frac{m_1}{m_2} \times (\frac{r_1}{r_2}) {}^{2}  \times { \omega_2}^{2}  \\  \\ { \omega_2}^{2}  =  \frac{1000}{512}  \times ( \frac{4}{5} ) {}^{2} \times  { 60}^{2}  \\  \\ { \omega_2}^{2}  =  \frac{5}{4}  \times  {60}^{2}  \\  \\ { \omega_2} = 30 \sqrt{5}  \: rpm

Similar questions