Math, asked by vijendra15, 1 year ago

Please solve this question

If you know the answer then answer if you don't know the answer then don't answer.

Thank you​

Attachments:

Answers

Answered by arvishaali2004
2

Answer:

Step-by-step explanation:

See the ans in attachment,

Attachments:

Anonymous: hi
Anonymous: ok
Answered by FelisFelis
1

Answer:

The value of x is \frac{1}{2},\:x=\frac{9+\sqrt{57}}{4},\:x=\frac{9-\sqrt{57}}{4}

Step-by-step explanation:

The provided expression is \sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}

squaring both the sides in above expression

(\sqrt{2x^{2}-9x+4} +3\sqrt{2x-1})^{2}=(\sqrt{2x^2+21x-11})^{2}

since (a + b)² = a² +b² +2ab

(\sqrt{2x^{2}-9x+4})^{2} +(3\sqrt{2x-1})^{2} + 6\sqrt{2x-1}\sqrt{2x^{2}-9x+4} = (\sqrt{2x^2+21x-11})^{2}

2x^{2}-9x+4+9(2x-1) +6\sqrt{2x-1}\sqrt{2x^{2}-9x+4} =2x^{2}+21x-11

2x^{2}-9x+4+18x-9 + 6\sqrt{2x-1}\sqrt{2x^{2}-9x+4}=2x^{2}+21x-11

2x^{2}+9x-5 +6\sqrt{2x-1}\sqrt{2x^{2}-9x+4}=2x^{2}+21x-11

Subtract both the sides by 2x^{2}

2x^{2}-2x^{2}+9x-5 + 6\sqrt{2x-1}\sqrt{2x^{2}-9x+4}=2x^{2}-2x^{2}+21x-11

9x-5 + 6\sqrt{2x-1}\sqrt{2x^{2}-9x+4}=21x-11

Subtract both the sides by 9x,

9x-5-9x +6\sqrt{2x-1}\sqrt{2x^{2}-9x+4}=21x-11-9x

-5 +6\sqrt{2x-1}\sqrt{2x^{2}-9x+4}=12x-11

Add both the sides by 11,

6 +6\sqrt{2x-1}\sqrt{2x^{2}-9x+4}=12x

divide both the sides by 6,

1 +\sqrt{2x-1}\sqrt{2x^{2}-9x+4}=2x

subtract both the sides by 1,

(2x-1)(2x^{2}-9x+4)=2x-1

4x^{3}-20x^{2}+17x-4=2x-1

subtract both the sides by 2x, in above expression

4x^{3}-20x^{2}+15x-4=-1

add 1 both the sides,

4x^{3}-20x^{2}+15x-3=0

Solve by factoring

Factors: \left(2x-1\right)\left(2x^2-9x+3\right)

\left(2x-1\right)\left(2x^2-9x+3\right)=0

\frac{1}{2}=x

\mathrm{Solve\:}\:2x-1=0:\quad x=\frac{1}{2}

\mathrm{Solve\:}\:2x^2-9x+3=0:\quad x=\frac{9+\sqrt{57}}{4},\:x=\frac{9-\sqrt{57}}{4}

x=\frac{1}{2},\:x=\frac{9+\sqrt{57}}{4},\:x=\frac{9-\sqrt{57}}{4}

The value of x is \frac{1}{2},\:x=\frac{9+\sqrt{57}}{4},\:x=\frac{9-\sqrt{57}}{4}

Similar questions