Math, asked by depanshu, 3 months ago

Please solve this question - Integration Chapter

Attachments:

Answers

Answered by PassAaoNa
0

\huge \sf {\orange {\underline {\pink{\underline {❥︎A᭄ɴsᴡᴇʀ࿐ :−}}}}}

Given:

\displaystyle\int\,\frac{(a^x+b^x)^2}{a^xb^x}

=\displaystyle\int\,\frac{(a^{2x}+b^{2x}+2\,a^xb^x)}{a^xb^x}\;dx=∫

=\displaystyle\int\,[\frac{ a^{2x}}{ a^xb^x}+\frac{b^{2x}}{ a^xb^x}+\frac{2 a^xb^x}{a^xb^x}]\;dx=∫[

=\displaystyle\int\,[\frac{a^x}{b^x}+\frac{b^x}{a^x}

=\displaystyle\int\,[(\frac{a}{b})^x+(\frac{b}{a}

=\displaystyle\int\,(\frac{a}{b})^x\,dx+\int\,(\frac{b}{a})^x\,dx+2\int\,dx=∫(

\sf{We \: know \: that,}\boxed{\bf\int\,a^x\,dx=\frac{a^x}{loga}+c}

=\displaystyle\,\frac{(\frac{a}{b})^x}{log\frac{a}{b}}+\frac{(\frac{b}{a})^x}{log\frac{b}{a}}

\therefore\bf\,\displaystyle\int\,\frac{(a^x+b^x)^2}{a^xb^x}\;dx=\frac{(\frac{a}{b})^x}{log(\frac{a}{b})}+\frac{(\frac{b}{a})^x}{log(\frac{b}{a})}∴∫

Answered by moviesshinchan9
1

Step-by-step explanation:

when a carpet is beaten with a stick and Comes out of it. Explain

Similar questions