Math, asked by shashank9922, 1 year ago

please solve this question it is an emergency please​

Attachments:

Answers

Answered by Anonymous
20

Question:

Prove that :

 {sec}^{6} \theta  =  {tan}^{6} \theta + 3 {tan}^{2} \theta. {sec}^{2} \theta + 1

Note:

• sin²@ + cos²@ = 1

• cosec²@ - cot²@ = 1

• sec²@ - tan²@ = 1

• (A+B)³ = A³ + 3•A•B•(A+B) + B³

Proof:

  =  > lhs =  {sec}^{6} \theta \\   =  >lhs = { ({sec}^{2} \theta) }^{3}  \\  =  > lhs =  { ({tan}^{2} \theta + 1) }^{3}  \\  =  > lhs =  { ({tan}^{2} \theta) }^{3} + 3 . {tan}^{2} \theta . 1 . ( {tan}^{2} \theta + 1 ) +  {1}^{3}  \\  =  > lhs =   {tan}^{6}  \theta + 3. {tan}^{2}  \theta. {sec}^{2}  \theta + 1 \\  =  > lhs = rhs

Hence proved.

Answered by RvChaudharY50
94

\Large\underline\mathfrak{Question}

Prove :- sec^6@ = tan^6@ + 3tan²@*sec²@ + 1

\Large\bold\star\underline{\underline\textsf{Formula\:used}}

  • a^(p*q) = (a^(p)*)^q
  • sec²@ = (1+tan²@)
  • (a+b)³ = a³ + b³ + 3ab(a+b)

__________________________________

\underline {\underline{\LARGE{{\bf{\green{S}}}{\mathfrak{o}}{\mathfrak{\orange{l}}}{\mathfrak{\red{u}}}{\mathfrak{\pink{t}}}{\mathfrak{\purple{i}}}{\mathfrak{\blue{o}}}{\mathfrak{\red{n}}}}}} : \:

 \bf \:  \green{Solving}, LHS ,  \:  \\  \\ \red\longrightarrow \sf sec^{6}  \theta = (sec^{2} \theta)^{3}  \\  \\ \red\longrightarrow \sf \: (1 +  {tan}^{2}  \theta)^{3}  \\  \\ \red\longrightarrow \sf 1^{3}  +( {tan}^{2}  \theta)^{3}  + 3 \times 1 \times {tan}^{2}  \theta(1 +  {tan}^{2}  \theta) \\  \\ \red\longrightarrow \bf \blue{ 1 +  {tan}^{6} \theta \:  + 3{tan}^{2}  \theta  \times sec^{2} \theta} \\  \\  \boxed{\red{\textbf{= RHS (Proved)}}} \:

____________________________________

\orange{\huge\bf \: proof \: with}   \: \huge\mathbb{RHS} \:

\bf\green{tan^{6}A+3tan^{2}A\:\times\:sec^{2}A+1} \\  \\=\sf tan^{6}A + 3tan^{2}A(1+ tan^{2}A)+1 \\  \\ \bf since \:\boxed{\sf \: sec^{2}A = 1+ Tan^{2}A} \\  \\\sf \: tan^{6} A + 3tan^{4}A + 3 tan^{2} A  + 1 \\ =  \sf \: (Tan^{2}A)^{3}  + 3(tan^{2} A)^{2} + 3 (tan^{2} A) + 1 \\  \\\blue{\sf It  \: is \:  in \:  the \:   \: form \:  of}\\ \\\purple{\boxed{\bf a^{3}+3a^{2} b+3ab^{2}+b^{3}=(a+b)^{3}}} \\  \\ \sf ∴(tan^{2} A)^{3}+3(tan^{2} A)^{2}+3(tan^{2}A)+1\\=\sf (tan^{2}A+1)^{3}\\=\sf (sec^{2} A)^{3}\\=\huge\red{\boxed{\bf \: sec^{6}A}}

________________________________

#BAL

#answerwithquality

Similar questions