Math, asked by rohit3132001, 1 year ago

please solve this question it is urgent

Attachments:

Answers

Answered by MarkAsBrainliest
12
\bold{Answer :}

\text{We know that,}

cos2x = 1 - 2 {sin}^{2}x

\implies{sin}^{2}x=\frac{1}{2}(1-cos2x)

 Then, \int_{-\frac {\pi}{3}}^\frac {\pi}{3} {sin}^{2}x\:dx

 = \frac{1}{2} \int_{-\frac {\pi}{3}}^\frac {\pi}{3} (1-cos2x)dx

 = \frac{1}{2} \int_{-\frac{\pi}{3}}^\frac {\pi}{3} dx -\frac{1}{2} \int_{-\frac{\pi}{3}}^\frac {\pi}{3} cos2x\:dx

 = \frac{1}{2}\bigg[x\bigg]_{-\frac{\pi}{3}}^{+\frac{\pi}{3}}-\frac{1}{4}\bigg[sin2x\bigg]_{-\frac{\pi}{3}}^{+\frac{\pi}{3}}

 =\frac{1}{2}\{\frac{\pi}{3}-(-\frac{\pi}{3})\}-\frac{1}{4}\{sin\frac{2\pi}{3}-sin(\frac{-2\pi}{3})\}

 =\frac{1}{2}(\frac{2\pi}{3})-\frac{1}{4}(2sin\frac{2\pi}{3})

 =\frac{\pi}{3}-\frac{1}{4}(2\times\frac{\sqrt{3}}{2})

 =\bold{\frac{\pi}{3}-\frac{\sqrt{3}}{4}}

\bigstar \: \bold{MarkAsBrainliest} \: \bigstar
Similar questions