Math, asked by sanyogprakash2008, 5 months ago

please solve this question it is very important. please ​

Attachments:

Answers

Answered by vipashyana1
1

Answer:

p =  \frac{5}{6} ,  \: q =  \frac{( - 7)}{6} , \: r =  \frac{13}{16}  \\ (p + q) + r = p + (q + r) \\ ( \frac{5}{6}  -  \frac{7}{6} ) +  \frac{13}{16}  =  \frac{5}{6}  + ( \frac{( - 7)}{6}  +  \frac{13}{16}  \\ ( \frac{5 - 7}{6} ) +  \frac{13}{16}  =  \frac{5}{6}  + ( \frac{( - 56) + 39}{48} ) \\  \frac{( - 2)}{6}  +  \frac{13}{16}  =  \frac{5}{6}  +  \frac{( - 17)}{48}  \\  \frac{( - 16) + 39}{48}  =  \frac{40 - 17}{48}  \\  \frac{23}{48}  =  \frac{23}{48}  \\ LHS=RHS \\ Hence \:  verified

Answered by darshitanarsingani17
1

Answer:

No, it is not true.

Step-by-step explanation:

p = 5/6

q = -7/6

r = 13/16

L.H.S = (p+q) + r

         = [5/6 + (-7/6)] + 13/16

         = (-2/6) + 13/16  ( ∵ First we need to solve the bracket and then further)

         = -8/48 + 39/48  (∵ Taking LCM as 48)

         = 31/48

R.H.S = p + (q+r)

         = 5/6 + [(-7/6) + 13/16]

         = 5/6 + [(-56/48) + 39/48]  (∵ taking LCM as 48)

         = 5/6 + (-17/48)

         = 40/48 - 17/48

         = 23/48

Hence LHS ≠ RHS

Similar questions