Math, asked by mddaniyal, 1 year ago

Please solve this question:

Lim. (1 - cos 2x) / (cos 2x - cos 8x)

x-> 0

Answers

Answered by rishu6845
20

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by amirgraveiens
5

The solution for Lim. (1 - cos 2x) / (cos 2x - cos 8x)

x-> 0 is 1/7.

   

Step-by-step explanation:

Given:

\lim_{x \to 0} \frac{1 - cos 2x}{cos 2x - cos 8x}

=\lim_{x \to 0} \frac{1 - cos 2x}{cos 2x -{2(2cos^22x-1)}-1}

=\lim_{x \to \0} \frac{1-cos(2x)}{cos 2x-4cos^22x+3}

=\lim_{x \to 0}\frac{1-cos(2x)}{-4 cos2^2x + cos 2x +3}

=\lim_{x \to 0}\frac{1-cos(2x)}{-[4 cos2^2x - cos 2x -3]}

=\lim_{x \to \0} \frac{-(cos 2x - 1)}{-[4 cos22x - cos 2x - 3}

Splitting the middle term of the denominator

=\lim_{x \to \0}\frac{(cos 2x - 1)}{4 cos^22x - 4 cos 2x + 3 cos 2x - 3}

=\lim_{x \to \0}\frac{(cos 2x - 1)}{4 cos 2x(cos 2x - 1) + 3(cos 2x - 1)}

=\lim_{x \to \0}\frac{(cos 2x - 1)}{(cos 2x - 1)(4 cos 2x + 3)}

=\lim_{x \to \0}\frac{1}{(4 cos 2x + 3)}

=\frac{1}{4 cos (0) + 3}

=\frac{1}{1\times4+3}    [cos(0)=1]

=\frac{1}{7}

Similar questions