Math, asked by aadishree7667, 9 months ago

please solve this question....

no wrong answers...

thanku..

Attachments:

Answers

Answered by ERB
2

Step-by-step explanation:

sin⁻¹(3/5) - sin⁻¹(8/17) = sin⁻¹[sin(sin⁻¹(3/5) - sin⁻¹(8/17))]

= sin⁻¹[sinsin⁻¹(3/5) × cossin⁻¹(8/17) - cossin⁻¹(3/5) × sinsin⁻¹(8/17)]

=sin⁻¹[3/5 × coscos⁻¹(\frac{\sqrt{17^2-8^2}}{17}) - coscos⁻¹(\frac{\sqrt{5^2-3^2}}{5}) ×8/17]

= sin⁻¹[3/5 × 15/17 - 4/5 × 8/17]

=sin⁻¹[9/17 - 32/85]

=sin⁻¹(13/85)

=cos⁻¹(\frac{\sqrt{85^2- 13^2}}{85})

=cos⁻¹(84/85)

Answered by anushkasharma8840
12

Step-by-step explanation:

sin⁻¹(3/5) - sin⁻¹(8/17) = sin⁻¹[sin(sin⁻¹(3/5) - sin⁻¹(8/17))]

= sin⁻¹[sinsin⁻¹(3/5) × cossin⁻¹(8/17) - cossin⁻¹(3/5) × sinsin⁻¹(8/17)]

=sin⁻¹[3/5 × coscos⁻¹ - coscos⁻¹

 \frac{ \sqrt{ {17}^{2} -  {8}^{2}  } }{17}

-

 \frac{ \sqrt{ {5}^{2} }  - {3}^{2}  }{5}

×8/17]

= sin⁻¹[3/5 × 15/17 - 4/5 × 8/17]

=sin⁻¹[9/17 - 32/85]

=sin⁻¹(13/85)

=

  {cos}^{ - 1}  \frac{ \sqrt{ {85}^{2} -  {13}^{2}  } }{85}

=cos⁻¹(84/85)

Similar questions