please solve this question....
no wrong answers...
thanku..
Attachments:
Answers
Answered by
2
Step-by-step explanation:
sin⁻¹(3/5) - sin⁻¹(8/17) = sin⁻¹[sin(sin⁻¹(3/5) - sin⁻¹(8/17))]
= sin⁻¹[sinsin⁻¹(3/5) × cossin⁻¹(8/17) - cossin⁻¹(3/5) × sinsin⁻¹(8/17)]
=sin⁻¹[3/5 × coscos⁻¹() - coscos⁻¹() ×8/17]
= sin⁻¹[3/5 × 15/17 - 4/5 × 8/17]
=sin⁻¹[9/17 - 32/85]
=sin⁻¹(13/85)
=cos⁻¹()
=cos⁻¹(84/85)
Answered by
12
Step-by-step explanation:
sin⁻¹(3/5) - sin⁻¹(8/17) = sin⁻¹[sin(sin⁻¹(3/5) - sin⁻¹(8/17))]
= sin⁻¹[sinsin⁻¹(3/5) × cossin⁻¹(8/17) - cossin⁻¹(3/5) × sinsin⁻¹(8/17)]
=sin⁻¹[3/5 × coscos⁻¹ - coscos⁻¹
-
×8/17]
= sin⁻¹[3/5 × 15/17 - 4/5 × 8/17]
=sin⁻¹[9/17 - 32/85]
=sin⁻¹(13/85)
=
=cos⁻¹(84/85)
Similar questions