Physics, asked by sophiacarey23, 7 months ago

Please solve this question number 4

Attachments:

Answers

Answered by Anonymous
3

Answer:

 \boxed{\mathfrak{(4) \  \dfrac{3}{2} A+   \dfrac{7 }{3} B }}

Explanation:

Relation of velocity of particle with time is given as:

 \rm v = At + Bt^2

Rate of change of displacement is equal to velocity i.e.

 \rm v =  \dfrac{dx}{dt}

So,

 \rm \implies  \dfrac{dx}{dt}  = At + Bt^2 \\  \\  \rm \implies \int\limits^x_0dx = \int\limits^{t_2}_{t_1}(At + Bt^2).dt

For the given question:

 \rm t_1 = 1 \ s

 \rm t_2 = 2 \ s

  \rm \implies \int\limits^x_0dx = \int\limits^{2}_{1}(At + Bt^2).dt \\  \\  \rm \implies x\Big|_0^x =  \dfrac{A {t}^{2} }{2} +   \dfrac{B {t}^{3} }{3}   \Big|_1^2 \\  \\ \rm \implies x = \dfrac{A  \times {2}^{2} }{2} +   \dfrac{B  \times {2}^{3} }{3}   - (\dfrac{A  \times {1}^{2} }{2} +   \dfrac{B  \times  {1}^{3} }{3}  )\\  \\ \rm \implies x = \dfrac{4A }{2} +   \dfrac{8B }{3}   - (\dfrac{A }{2} +   \dfrac{B   }{3}  )\\  \\ \rm \implies x = \dfrac{4A }{2} +   \dfrac{8B }{3}   - \dfrac{A }{2}  -    \dfrac{B   }{3}  \\  \\ \rm \implies x = \dfrac{4A - A }{2} +   \dfrac{8B -  B}{3}   \\  \\ \rm \implies x = \dfrac{3A }{2} +   \dfrac{7B }{3}

Similar questions