Math, asked by aadishree7667, 9 months ago

please solve this question of mathematics ...class 12... :)​

Attachments:

Answers

Answered by ERB
1

Answer:

6\sqrt{x^2-9x+20}  +34ln|2x-9 + 2\sqrt{x^2-9x+20}| +c

Step-by-step explanation:

\int\limit {\frac{6x+7}{\sqrt{(x-5)(x-4)}} } \, dx

= \int\limit {\frac{6x+7}{\sqrt{x^2-9x+20}} } \, dx    ..............................(i)

y = x²-9x+20

dy = (2x - 9)dx

(i)...................3\int{\frac{2x-9}{\sqrt{x^2-9x+20}}  dx + 34\int{\frac{1}{\sqrt{x^2-9x+20}}  dx

= 3\int{\frac{dy}{\sqrt{y}}}  +34\int{\frac{1}{\sqrt{\frac{1}{4}((2x-9)^2-1)}}  dx

= 3\times2\sqrt{y}  +34\int{\frac{2}{\sqrt{(2x-9)^2-1}}  dx          2x-9 = u  ► 2dx= du

= 6\sqrt{x^2-9x+20}  +34\int{\frac{du}{\sqrt{(u)^2-1}}

= 6\sqrt{x^2-9x+20}  +34ln|u + \sqrt{u^2-1}| +c

= 6\sqrt{x^2-9x+20}  +34ln|2x-9 + \sqrt{(2x-9)^2-1}| +c

= 6\sqrt{x^2-9x+20}  +34ln|2x-9 + 2\sqrt{x^2-9x+20}| +c

Similar questions