Math, asked by vineetfaskeX, 1 month ago

Please solve this question of trignometry.​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \tt \:  \frac{ sec ^{2} ( \theta)sin ^{2}(\theta) - cosec^{2}( \theta) + cosec^{2} ( \theta)cos^{2}( \theta)  }{sec ^{2}( \theta)sin^{2}( \theta) - cosec^{2}( \theta)cos^{2}( \theta)    }  \\

 \tt \:  =  \frac{ tan^{2}(\theta) - cosec^{2}( \theta) +cot^{2}( \theta)  }{tan^{2}( \theta) -cot^{2}( \theta)    }  \\

 \tt \:  =  \frac{ tan^{2}(\theta) -1  }{tan^{2}( \theta) -cot^{2}( \theta)    }  \\

 \tt \:  =  \frac{ tan^{2}(\theta) -1  }{tan^{2}( \theta) - \dfrac{1}{tan^{2}( \theta)}    }  \\

 \tt \:  =  \frac{ tan ^{2}( \theta) \{ tan^{2}(\theta) -1  \} }{tan^{4}( \theta) - 1   }  \\

 \tt \:  =  \frac{ tan ^{2}( \theta) \{ tan^{2}(\theta) -1  \} }{ \{tan^{2}( \theta) - 1 \}  \{tan^{2}( \theta) + 1 \}   }  \\

 \tt \:  =  \frac{ tan ^{2}( \theta)  }{  tan^{2}( \theta) + 1    }  \\

 \tt \:  =  \frac{ tan ^{2}( \theta)  }{  sec^{2}( \theta)   }  \\

 \tt = sin^{2} ( \theta)

Answered by mathdude500
2

\large\underline{\sf{Given \:Question - }}

Prove that,

 \sf \: \dfrac{ {sec}^{2}\theta  {sin}^{2}\theta  - {cosec}^{2}\theta +  {cosec}^{2}\theta  {cos}^{2}\theta}{{sec}^{2}\theta  {sin}^{2}\theta-  {cosec}^{2}\theta {cos}^{2}\theta} = sin ^{2} \theta

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\sf \: \dfrac{ {sec}^{2}\theta  {sin}^{2}\theta  - {cosec}^{2}\theta +  {cosec}^{2}\theta  {cos}^{2}\theta}{{sec}^{2}\theta  {sin}^{2}\theta-  {cosec}^{2}\theta {cos}^{2}\theta}

can be rewritten as

\sf \: =  \:  \dfrac{ {sec}^{2}\theta  {sin}^{2}\theta  - {cosec}^{2}\theta(1 -{cos}^{2}\theta)}{{sec}^{2}\theta  {sin}^{2}\theta-  {cosec}^{2}\theta {cos}^{2}\theta}

We know,

\boxed{ \bf{ \: {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this identity, we get

\sf \: =  \:  \dfrac{ {sec}^{2}\theta  {sin}^{2}\theta  - {cosec}^{2}\theta{sin}^{2}\theta}{{sec}^{2}\theta  {sin}^{2}\theta-  {cosec}^{2}\theta {cos}^{2}\theta}

We know,

\boxed{ \bf{ \:cosec\theta  \times sin\theta  = 1}}

So,

\sf \: =  \:  \dfrac{ {sec}^{2}\theta  {sin}^{2}\theta  - 1}{{sec}^{2}\theta  {sin}^{2}\theta-  {cosec}^{2}\theta {cos}^{2}\theta}

Now, we know,

\boxed{ \bf{ \:secx =  \frac{1}{cosx}}}  \: \: and \:  \: \boxed{ \bf{ \:cosecx =  \frac{1}{sinx}}}

So, using these, we get

\sf \:  =  \: \dfrac{\dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta } - 1 }{\dfrac{ {sin}^{2} \theta }{ {cos}^{2}\theta  }  - \dfrac{ {cos}^{2} \theta }{ {sin}^{2} \theta } }

\sf \:  =  \: \dfrac{\dfrac{ {sin}^{2} \theta  -  {cos}^{2} \theta }{ {cos}^{2} \theta } }{\dfrac{ {sin}^{4} \theta  -  {cos}^{4} \theta }{ {cos}^{2}\theta  {sin}^{2}  \theta }}

We know,

\boxed{ \bf{ \: {x}^{2} -  {y}^{2} = (x + y)(x - y)}}

So, using this, we get

\sf \:  =  \: [ {sin}^{2}\theta  -  {cos}^{2}\theta ] \times \dfrac{ {sin}^{2}\theta  }{( {sin}^{2}\theta  -  {cos}^{2}\theta)( {sin}^{2}\theta  +  {cos}^{2} \theta}

We know,

\boxed{ \bf{ \: {sin}^{2}x +  {cos}^{2}x = 1}}

So, we get

\sf \:  =  \:  {sin}^{2}\theta

Hence,

\boxed{ \bf{ \: \sf \: \dfrac{ {sec}^{2}\theta  {sin}^{2}\theta  - {cosec}^{2}\theta +  {cosec}^{2}\theta  {cos}^{2}\theta}{{sec}^{2}\theta  {sin}^{2}\theta-  {cosec}^{2}\theta {cos}^{2}\theta} = sin ^{2} \theta}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions