Math, asked by kalrabhumika54, 1 year ago

Please solve this question. Only a genius can do it .

Attachments:

Answers

Answered by Anonymous
14

\underline{\underline{\bold{Question:}}}

\tt{If\quad (2.381)^x=(0.2381)^y=(10)^z\quad ,\:then\:\:the\:\:value\:\:of}

\tt{\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x}=?}

\bold{Solution:}

\tt{Let\quad(2.381)^x=(0.2381)^y=(10)^z\:be\:k.}\\\\\\\tt{So}\\\\\\\implies{\tt{(2.381)^x=k}}\\\\\therefore\quad{\tt{2.381=k^{\frac{1}{x}}}}\\\\\\\implies{\tt{(0.2381)^y=k}}\\\\\therefore\quad 0.2381=k^{\frac{1}{y}}\\\\\\\\\implies{\tt{10^z=k}}\\\\\therefore\quad 10=k^{\frac{1}{z}}\\\\\\

From above conditions.

\implies{\bold{\dfrac{2.381}{0.2381}=10}}\\\\\\\underline{\bold{Put\:the\:value,}}\\\\\\\implies{\bold{\dfrac{k^{\frac{1}{x}}}{k^{\frac{1}{y}}}=k^{\frac{1}{z}}}}\\\\\\\implies{\bold{k^{(\frac{1}{x}-\frac{1}{y})}=k^{\frac{1}{z}}}}\\\\\\\implies{\bold{\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{z}}}\\\\\\\implies{\bold{\dfrac{1}{z}+\dfrac{1}{y}-\dfrac{1}{x}=0}}\\

\boxed{\boxed{\bold{\dfrac{1}{z}+\dfrac{1}{y}-\dfrac{1}{x}=0}}}


Sauron: ❤️❤️⭐ Beautiful answer ⭐❤️❤️
Anonymous: Thanks.❤️❤️
kalrabhumika54: Thanks a lot
Anonymous: Wello ..
Answered by Anonymous
9
\mathfrak{\huge{Answer:}}

Given that:

\tt{2.381^x = 0.2381^{y} = 10^z}

Let all these values be = k

In that way, we can assume :

\tt{2.381^x = 0.2381^{y} = 10^z = k}

Now, individually, the values of all these terms will be :

\sf{2.381 = k^\frac{1}{x}}

And :

\sf{0.2381 = k^\frac{1}{y}}

The last term will be :

\sf{10 = k^\frac{1}{z}}

In these types of questions, after simplifying the values up to this extent, we need to find relations between the numeric values. Here, we can state the relation :

\sf{0.2381 \times 10 = 2.381}

Put the variables in place of these numeric values :

\sf{k^\frac{1}{y} \times k^\frac{1}{z} = k^\frac{1}{x}}

Using the property of exponents, we can write :

\tt{\frac{1}{y} + \frac{1}{z} = \frac{1}{x}}\\

=》 \tt{\frac{1}{y} + \frac{1}{z} - \frac{1}{x} = 0}\\

That's your answer.

Final answer : \boxed{\bold{(3)\:0}}

Anonymous: बहु सम्यक् अस्ति!!
Anonymous: Thanks! :)
Similar questions