Math, asked by Anonymous, 9 months ago

please solve this question ..........please......​

Attachments:

Answers

Answered by Anonymous
1

YOUR QUESTIONS IS--------------If tan x + tan (x + π/3) + tan (x + 2π/3) = 3

prove that tan 3x = 1

we know:- tan(A + B) = [{tanA + tanB}/{1 - tanA.tanB}]

therefore,

tanx + {tanx + tanπ/3}/{1 - tanx.tanπ/3} + {tanx + tan2π/3}/{1 - tanx.tan2π/3} = 3

=> tanx + {tanx + √3}/{1 - √3tanx} + {tanx - √3}/{1 + √3tanx} = 3

=>  = 3

=> tanx + {tanx + √3tan²x + √3 + 3tanx + tanx - √3tan²x - √3 + 3tanx}/{1 - 3tan²x} = 3

=> tanx + {8tanx}/{1 - 3tan²x} = 3

=> {tanx - 3tan³x + 8tanx}/{1 - 3tan²x} = 3

=> {9tanx - 3tan³x}/{1 - 3tan²x} = 3

=> 3{tanx - 3tan³x}/{1 - 3tan²x} = 3

we know:- tan3A = {tanA - 3tan³A}/{1 - 3tan²A}

therefore, tan3x = 3/3

=> tan3x = 1 [hence, proved]

Answered by pulakmath007
16

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

 \displaystyle \: tan \: (A + B) =  \frac{tan \: A + tan \: B}{1 - tan \: A  \: tan B }

2.

 \displaystyle \: tan \:  \frac{2\pi}{3} = tan(\pi -  \frac{\pi}{3}  ) =  - tan \:  \frac{\pi}{3}  =  -  \sqrt{3}

CALCULATION

 \displaystyle \: tan \: x +   tan(x +  \:  \frac{\pi}{3}) +  tan(x +  \:  \frac{2\pi}{3}) = 3

 \implies \displaystyle \:  \: tanx \:  + \frac{tan \: x + tan \:  \frac{\pi}{3} }{1 - tan \: x \: tan  \frac{\pi}{3}  } +   \frac{tan \: x + tan \:  \frac{2\pi}{3} }{1 - tan \: x \: tan  \frac{2\pi}{3}  } = 3

 \implies \displaystyle \:  \: tanx \:  + \frac{tan \: x +  \sqrt{3}  }{1 -  \sqrt{3} tan \: x   } +   \frac{tan \: x  -  \sqrt{3}  }{1  +  \sqrt{3} tan \: x \:} = 3 \:  \: (by \: \: formula  \: 2)

 \implies \displaystyle \:   \frac{tanx(1 -  3 {tan}^{2}x) + (tanx +  \sqrt{3} ) (1   + \sqrt{3}tanx ) +  \: (tanx  -   \sqrt{3} )(1    -  \sqrt{3}tanx ) \: }{ (1 -  3  {tan}^{2}x)} = 3

 \implies \displaystyle \:  \frac{tanx - 3 {tan}^{3} x + tanx +  \sqrt{3 }  {tan}^{2} x +  \sqrt{3} + 3tanx   -   \sqrt{3 }  {tan}^{2} x  -   \sqrt{3} +</u></em><em><u>tanx</u></em><em><u>+</u></em><em><u> 3tanx  }{1 - 3 {tan}^{2}x }  = 3

 \implies \: \displaystyle \:   \frac{3(3tanx -  {tan}^{3} x)}{1 - 3 {tan}^{2}x }  = 3

 \implies \: \displaystyle \:   \frac{(3tanx -  {tan}^{3} x)}{1 - 3 {tan}^{2}x }  = 1

Similar questions